anaconda安装注意
1.记住安装路径 2.跳过安装vscode,如果在anaconda prompt中能够看到(base)说明已经安装成功
有无显卡对学习pytorch并无影响,显卡其训练加速的作用
显卡配置主要涉及:驱动+cuda Toolkit(工具包),cuda工具包已经可以跟随pytorch一并安装。
管理环境:在Anaconda Prompt 下输入
conda creat -n pytorch python=3.6
-n表示喃木
激活环境:conda activate pytorch
安装pytorch
官网:稳定版、操作系统、conda/pip安装方式(windows使用conda安装、linux使用pip安装)、
在是显示适配器中可以看到显卡型号
无英伟达显卡:cuda选择None
有英伟达显卡:cuda选择版本号(9.2)
复制对应指令,即可安装
nvidia-smi 显示所有GPU的当前信息状态
在python编辑器中输入
import torch#无报错即表明可使用pytorch
torch.cuda.is_available()#输出值为True,即表明cuda可用;False相反
pycharm
安装–进入官网,选择社区版本
安装路径选择一下,之后只选择create Associations(有一个询问.py文件如何如何的,点击对号即可)即可,如果勾选Add launchers dir to the PATH 则以后打开pycharm时可直接在终端输入pycharm打开pycharm,不需要点击快捷方式打开。
往下安装,其余都不用管,出现啥都点下一步。
配置–点击打开pycharm,询问你是否导入一些配置,不导入。
选择页面颜色设置–选择一种即可
下一步询问使用是否使用一些插件–跳过即可
jupyter
在环境下 安装该环境版本的jupyter notebook
首先安装在该环境的终端安装
使用 pip intall nb_conda 将会安装失败,暂时不知道原因
使用conda install nb_conda可能会成功,如果不成功使用以下代码
conda install nb_conda_kernels如果还不成功,删掉豆瓣镜像源,改用清华镜像或者中科大镜像即可(我到第三步成功)
安装nb_conda或者nb_conda_kernels之后,直接在pytorch环境中输入jupyter notebook即可打开pytorch版本的jupyter notebook
可在打开jupyter notebook中输入import torch验证,使用快捷键shift + enter即可运行当前代码块
import torch
print(dir(torch))#打开查看torch这个包里面有什么
print(dir(torch.cuda))#打开查看torch这个包里的cuda小包里面有什么
print(dir(torch.cuda.is_available()))#打开查看torch这个包里的cuda小包里的is_available小袋子面有什么
help(torch.cuda.is_available)#查看这个函数的官方解释文档,如何使用该函数,注意在使用help时,help括号内只写函数名称不写括号
返回结果(每一行结果是每一行代码的输出)
['AVG', 'AggregationType', 'AliasDb', 'AnyType', 'Argument', 'ArgumentSpec', 'BFloat16Storage', 'BFloat16Tensor', 'BenchmarkConfig', 'BenchmarkExecutionStats', 'Block', 'BoolStorage', 'BoolTensor', 'BoolType', 'BufferDict', 'ByteStorage', 'ByteTensor', 'CONV_BN_FUSION', 'CallStack', 'Capsule', 'CharStorage', 'CharTensor', 'ClassType', 'Code', 'CompilationUnit', 'CompleteArgumentSpec', 'ComplexDoubleStorage', 'ComplexFloatStorage', 'ComplexType', 'ConcreteModuleType', 'ConcreteModuleTypeBuilder', 'DeepCopyMemoTable', 'DeviceObjType', 'DictType', 'DisableTorchFunction', 'DoubleStorage', 'DoubleTensor', 'EnumType', 'ErrorReport', 'ExecutionPlan', 'FUSE_ADD_RELU', 'FatalError', 'FileCheck', 'FloatStorage', 'FloatTensor', 'FloatType', 'FunctionSchema', 'Future', 'FutureType', 'Generator', 'Gradient', 'Graph', 'GraphExecutorState', 'HOIST_CONV_PACKED_PARAMS', 'HalfStorage', 'HalfStorageBase', 'HalfTensor', 'INSERT_FOLD_PREPACK_OPS', 'IODescriptor', 'InferredType', 'IntStorage', 'IntTensor', 'IntType', 'InterfaceType', 'JITException', 'ListType', 'LiteScriptModule', 'LockingLogger', 'LoggerBase', 'LongStorage', 'LongTensor', 'MobileOptimizerType', 'ModuleDict', 'Node', 'NoneType', 'NoopLogger', 'NumberType', 'OptionalType', 'ParameterDict', 'PyObjectType', 'PyTorchFileReader', 'PyTorchFileWriter', 'QInt32Storage', 'QInt32StorageBase', 'QInt8Storage', 'QInt8StorageBase', 'QUInt4x2Storage', 'QUInt8Storage', 'REMOVE_DROPOUT', 'RRefType', 'SUM', 'ScriptClass', 'ScriptClassFunction', 'ScriptFunction', 'ScriptMethod', 'ScriptModule', 'ScriptModuleSerializer', 'ScriptObject', 'Set', 'ShortStorage', 'ShortTensor', 'Size', 'StaticModule', 'Storage', 'StorageContext', 'Stream', 'StreamObjType', 'StringType', 'TYPE_CHECKING', 'Tensor', 'TensorType', 'ThroughputBenchmark', 'TracingState', 'TupleType', 'Type', 'USE_GLOBAL_DEPS', 'USE_RTLD_GLOBAL_WITH_LIBTORCH', 'Use', 'Value', '_C', '_StorageBase', '_VF', '__all__', '__annotations__', '__builtins__', '__cached__', '__config__', '__doc__', '__file__', '__future__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', '_adaptive_avg_pool2d', '_adaptive_avg_pool3d', '_add_batch_dim', '_add_relu', '_add_relu_', '_aminmax', '_amp_foreach_non_finite_check_and_unscale_', '_amp_update_scale_', '_appdirs', '_assert', '_assert_async', '_autograd_functions', '_baddbmm_mkl_', '_batch_norm_impl_index', '_bmm', '_cast_Byte', '_cast_Char', '_cast_Double', '_cast_Float', '_cast_Half', '_cast_Int', '_cast_Long', '_cast_Short', '_cat', '_choose_qparams_per_tensor', '_classes', '_coalesce', '_compute_linear_combination', '_conj', '_convolution', '_convolution_mode', '_convolution_nogroup', '_copy_from', '_ctc_loss', '_cudnn_ctc_loss', '_cudnn_init_dropout_state', '_cudnn_rnn', '_cudnn_rnn_flatten_weight', '_cufft_clear_plan_cache', '_cufft_get_plan_cache_max_size', '_cufft_get_plan_cache_size', '_cufft_set_plan_cache_max_size', '_cummax_helper', '_cummin_helper', '_debug_has_internal_overlap', '_dim_arange', '_dirichlet_grad', '_embedding_bag', '_embedding_bag_forward_only', '_empty_affine_quantized', '_empty_per_channel_affine_quantized', '_euclidean_dist', '_fake_quantize_learnable_per_channel_affine', '_fake_quantize_learnable_per_tensor_affine', '_fft_c2c', '_fft_c2r', '_fft_r2c', '_foreach_abs', '_foreach_abs_', '_foreach_acos', '_foreach_acos_', '_foreach_add', '_foreach_add_', '_foreach_addcdiv', '_foreach_addcdiv_', '_foreach_addcmul', '_foreach_addcmul_', '_foreach_asin', '_foreach_asin_', '_foreach_atan', '_foreach_atan_', '_foreach_ceil', '_foreach_ceil_', '_foreach_cos', '_foreach_cos_', '_foreach_cosh', '_foreach_cosh_', '_foreach_div', '_foreach_div_', '_foreach_erf', '_foreach_erf_', '_foreach_erfc', '_foreach_erfc_', '_foreach_exp', '_foreach_exp_', '_foreach_expm1', '_foreach_expm1_', '_foreach_floor', '_foreach_floor_', '_foreach_frac', '_foreach_frac_', '_foreach_lgamma', '_foreach_lgamma_', '_foreach_log', '_foreach_log10', '_foreach_log10_', '_foreach_log1p', '_foreach_log1p_', '_foreach_log2', '_foreach_log2_', '_foreach_log_', '_foreach_maximum', '_foreach_minimum', '_foreach_mul', '_foreach_mul_', '_foreach_neg', '_foreach_neg_', '_foreach_reciprocal', '_foreach_reciprocal_', '_foreach_round', '_foreach_round_', '_foreach_sigmoid', '_foreach_sigmoid_', '_foreach_sin', '_foreach_sin_', '_foreach_sinh', '_foreach_sinh_', '_foreach_sqrt', '_foreach_sqrt_', '_foreach_sub', '_foreach_sub_', '_foreach_tan', '_foreach_tan_', '_foreach_tanh', '_foreach_tanh_', '_foreach_trunc', '_foreach_trunc_', '_foreach_zero_', '_fused_dropout', '_grid_sampler_2d_cpu_fallback', '_has_compatible_shallow_copy_type', '_import_dotted_name', '_index_copy_', '_index_put_impl_', '_initExtension', '_jit_internal', '_linalg_inv_out_helper_', '_linalg_qr_helper', '_linalg_solve_out_helper_', '_linalg_utils', '_load_global_deps', '_lobpcg', '_log_softmax', '_log_softmax_backward_data', '_logcumsumexp', '_lowrank', '_lu_with_info', '_make_dual', '_make_per_channel_quantized_tensor', '_make_per_tensor_quantized_tensor', '_masked_scale', '_mkldnn', '_mkldnn_reshape', '_mkldnn_transpose', '_mkldnn_transpose_', '_namedtensor_internals', '_nnpack_available', '_nnpack_spatial_convolution', '_ops', '_pack_padded_sequence', '_pad_packed_sequence', '_remove_batch_dim', '_reshape_from_tensor', '_rowwise_prune', '_s_where', '_sample_dirichlet', '_saturate_weight_to_fp16', '_shape_as_tensor', '_six', '_sobol_engine_draw', '_sobol_engine_ff_', '_sobol_engine_initialize_state_', '_sobol_engine_scramble_', '_softmax', '_softmax_backward_data', '_sparse_addmm', '_sparse_coo_tensor_unsafe', '_sparse_csr_tensor', '_sparse_log_softmax', '_sparse_log_softmax_backward_data', '_sparse_mask_helper', '_sparse_mm', '_sparse_softmax', '_sparse_softmax_backward_data', '_sparse_sparse_matmul', '_sparse_sum', '_stack', '_standard_gamma', '_standard_gamma_grad', '_storage_classes', '_string_classes', '_tensor', '_tensor_classes', '_tensor_str', '_test_serialization_subcmul', '_trilinear', '_unique', '_unique2', '_unpack_dual', '_use_cudnn_ctc_loss', '_use_cudnn_rnn_flatten_weight', '_utils', '_utils_internal', '_validate_sparse_coo_tensor_args', '_vmap_internals', '_weight_norm', '_weight_norm_cuda_interface', 'abs', 'abs_', 'absolute', 'acos', 'acos_', 'acosh', 'acosh_', 'adaptive_avg_pool1d', 'adaptive_max_pool1d', 'add', 'addbmm', 'addcdiv', 'addcmul', 'addmm', 'addmv', 'addmv_', 'addr', 'affine_grid_generator', 'align_tensors', 'all', 'allclose', 'alpha_dropout', 'alpha_dropout_', 'amax', 'amin', 'angle', 'any', 'arange', 'arccos', 'arccos_', 'arccosh', 'arccosh_', 'arcsin', 'arcsin_', 'arcsinh', 'arcsinh_', 'arctan', 'arctan_', 'arctanh', 'arctanh_', 'are_deterministic_algorithms_enabled', 'argmax', 'argmin', 'argsort', 'as_strided', 'as_strided_', 'as_tensor', 'asin', 'asin_', 'asinh', 'asinh_', 'atan', 'atan2', 'atan_', 'atanh', 'atanh_', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'attr', 'autocast_decrement_nesting', 'autocast_increment_nesting', 'autograd', 'avg_pool1d', 'backends', 'baddbmm', 'bartlett_window', 'base_py_dll_path', 'batch_norm', 'batch_norm_backward_elemt', 'batch_norm_backward_reduce', 'batch_norm_elemt', 'batch_norm_gather_stats', 'batch_norm_gather_stats_with_counts', 'batch_norm_stats', 'batch_norm_update_stats', 'bernoulli', 'bfloat16', 'bilinear', 'binary_cross_entropy_with_logits', 'bincount', 'binomial', 'bitwise_and', 'bitwise_not', 'bitwise_or', 'bitwise_xor', 'blackman_window', 'block_diag', 'bmm', 'bool', 'broadcast_shapes', 'broadcast_tensors', 'broadcast_to', 'bucketize', 'can_cast', 'candidate', 'cartesian_prod', 'cat', 'cdist', 'cdouble', 'ceil', 'ceil_', 'celu', 'celu_', 'cfloat', 'chain_matmul', 'channel_shuffle', 'channels_last', 'channels_last_3d', 'cholesky', 'cholesky_inverse', 'cholesky_solve', 'choose_qparams_optimized', 'chunk', 'clamp', 'clamp_', 'clamp_max', 'clamp_max_', 'clamp_min', 'clamp_min_', 'classes', 'clear_autocast_cache', 'clip', 'clip_', 'clone', 'column_stack', 'combinations', 'compiled_with_cxx11_abi', 'complex', 'complex128', 'complex32', 'complex64', 'conj', 'constant_pad_nd', 'contiguous_format', 'conv1d', 'conv2d', 'conv3d', 'conv_tbc', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d', 'convolution', 'copysign', 'cos', 'cos_', 'cosh', 'cosh_', 'cosine_embedding_loss', 'cosine_similarity', 'count_nonzero', 'cpp', 'cross', 'ctc_loss', 'ctypes', 'cuda', 'cuda_path', 'cuda_version', 'cudnn_affine_grid_generator', 'cudnn_batch_norm', 'cudnn_convolution', 'cudnn_convolution_add_relu', 'cudnn_convolution_relu', 'cudnn_convolution_transpose', 'cudnn_grid_sampler', 'cudnn_is_acceptable', 'cummax', 'cummin', 'cumprod', 'cumsum', 'default_generator', 'deg2rad', 'deg2rad_', 'dequantize', 'det', 'detach', 'detach_', 'device', 'diag', 'diag_embed', 'diagflat', 'diagonal', 'diff', 'digamma', 'dist', 'distributed', 'distributions', 'div', 'divide', 'dll', 'dll_path', 'dll_paths', 'dlls', 'dot', 'double', 'dropout', 'dropout_', 'dsmm', 'dsplit', 'dstack', 'dtype', 'eig', 'einsum', 'embedding', 'embedding_bag', 'embedding_renorm_', 'empty', 'empty_like', 'empty_quantized', 'empty_strided', 'enable_grad', 'eq', 'equal', 'erf', 'erf_', 'erfc', 'erfc_', 'erfinv', 'exp', 'exp2', 'exp2_', 'exp_', 'expm1', 'expm1_', 'eye', 'fake_quantize_per_channel_affine', 'fake_quantize_per_tensor_affine', 'fbgemm_linear_fp16_weight', 'fbgemm_linear_fp16_weight_fp32_activation', 'fbgemm_linear_int8_weight', 'fbgemm_linear_int8_weight_fp32_activation', 'fbgemm_linear_quantize_weight', 'fbgemm_pack_gemm_matrix_fp16', 'fbgemm_pack_quantized_matrix', 'feature_alpha_dropout', 'feature_alpha_dropout_', 'feature_dropout', 'feature_dropout_', 'fft', 'fill_', 'finfo', 'fix', 'fix_', 'flatten', 'flip', 'fliplr', 'flipud', 'float', 'float16', 'float32', 'float64', 'float_power', 'floor', 'floor_', 'floor_divide', 'fmax', 'fmin', 'fmod', 'fork', 'frac', 'frac_', 'frexp', 'frobenius_norm', 'from_file', 'from_numpy', 'full', 'full_like', 'functional', 'futures', 'gather', 'gcd', 'gcd_', 'ge', 'geqrf', 'ger', 'get_default_dtype', 'get_device', 'get_file_path', 'get_num_interop_threads', 'get_num_threads', 'get_rng_state', 'glob', 'gradient', 'greater', 'greater_equal', 'grid_sampler', 'grid_sampler_2d', 'grid_sampler_3d', 'group_norm', 'gru', 'gru_cell', 'gt', 'half', 'hamming_window', 'hann_window', 'hardshrink', 'has_cuda', 'has_cudnn', 'has_lapack', 'has_mkl', 'has_mkldnn', 'has_mlc', 'has_openmp', 'heaviside', 'hinge_embedding_loss', 'histc', 'hsmm', 'hsplit', 'hspmm', 'hstack', 'hub', 'hypot', 'i0', 'i0_', 'igamma', 'igammac', 'iinfo', 'imag', 'import_ir_module', 'import_ir_module_from_buffer', 'index_add', 'index_copy', 'index_fill', 'index_put', 'index_put_', 'index_select', 'inference_mode', 'init_num_threads', 'initial_seed', 'inner', 'instance_norm', 'int', 'int16', 'int32', 'int64', 'int8', 'int_repr', 'inverse', 'is_anomaly_enabled', 'is_autocast_enabled', 'is_complex', 'is_deterministic', 'is_distributed', 'is_floating_point', 'is_grad_enabled', 'is_inference_mode_enabled', 'is_loaded', 'is_nonzero', 'is_same_size', 'is_signed', 'is_storage', 'is_tensor', 'is_vulkan_available', 'is_warn_always_enabled', 'isclose', 'isfinite', 'isinf', 'isnan', 'isneginf', 'isposinf', 'isreal', 'istft', 'jit', 'kaiser_window', 'kernel32', 'kl_div', 'kron', 'kthvalue', 'last_error', 'layer_norm', 'layout', 'lcm', 'lcm_', 'ldexp', 'ldexp_', 'le', 'legacy_contiguous_format', 'lerp', 'less', 'less_equal', 'lgamma', 'linalg', 'linspace', 'load', 'lobpcg', 'log', 'log10', 'log10_', 'log1p', 'log1p_', 'log2', 'log2_', 'log_', 'log_softmax', 'logaddexp', 'logaddexp2', 'logcumsumexp', 'logdet', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'logit', 'logit_', 'logspace', 'logsumexp', 'long', 'lstm', 'lstm_cell', 'lstsq', 'lt', 'lu', 'lu_solve', 'lu_unpack', 'manual_seed', 'margin_ranking_loss', 'masked_fill', 'masked_scatter', 'masked_select', 'matmul', 'matrix_exp', 'matrix_power', 'matrix_rank', 'max', 'max_pool1d', 'max_pool1d_with_indices', 'max_pool2d', 'max_pool3d', 'maximum', 'mean', 'median', 'memory_format', 'merge_type_from_type_comment', 'meshgrid', 'min', 'minimum', 'miopen_batch_norm', 'miopen_convolution', 'miopen_convolution_transpose', 'miopen_depthwise_convolution', 'miopen_rnn', 'mkldnn_adaptive_avg_pool2d', 'mkldnn_convolution', 'mkldnn_convolution_backward_weights', 'mkldnn_linear_backward_weights', 'mkldnn_max_pool2d', 'mkldnn_max_pool3d', 'mm', 'mode', 'moveaxis', 'movedim', 'msort', 'mul', 'multinomial', 'multiply', 'multiprocessing', 'mv', 'mvlgamma', 'name', 'nan_to_num', 'nan_to_num_', 'nanmedian', 'nanquantile', 'nansum', 'narrow', 'narrow_copy', 'native_batch_norm', 'native_group_norm', 'native_layer_norm', 'native_norm', 'ne', 'neg', 'neg_', 'negative', 'negative_', 'nextafter', 'nn', 'no_grad', 'nonzero', 'norm', 'norm_except_dim', 'normal', 'not_equal', 'nuclear_norm', 'numel', 'nvtoolsext_dll_path', 'ones', 'ones_like', 'onnx', 'ops', 'optim', 'orgqr', 'ormqr', 'os', 'outer', 'overrides', 'package', 'pairwise_distance', 'parse_ir', 'parse_schema', 'parse_type_comment', 'path_patched', 'pca_lowrank', 'pdist', 'per_channel_affine', 'per_channel_affine_float_qparams', 'per_channel_symmetric', 'per_tensor_affine', 'per_tensor_symmetric', 'permute', 'pfiles_path', 'pinverse', 'pixel_shuffle', 'pixel_unshuffle', 'platform', 'poisson', 'poisson_nll_loss', 'polar', 'polygamma', 'positive', 'pow', 'prelu', 'prepare_multiprocessing_environment', 'preserve_format', 'prev_error_mode', 'prod', 'profiler', 'promote_types', 'put', 'py_dll_path', 'q_per_channel_axis', 'q_per_channel_scales', 'q_per_channel_zero_points', 'q_scale', 'q_zero_point', 'qint32', 'qint8', 'qr', 'qscheme', 'quantile', 'quantization', 'quantize_per_channel', 'quantize_per_tensor', 'quantized_batch_norm', 'quantized_gru', 'quantized_gru_cell', 'quantized_lstm', 'quantized_lstm_cell', 'quantized_max_pool1d', 'quantized_max_pool2d', 'quantized_rnn_relu_cell', 'quantized_rnn_tanh_cell', 'quasirandom', 'quint4x2', 'quint8', 'rad2deg', 'rad2deg_', 'rand', 'rand_like', 'randint', 'randint_like', 'randn', 'randn_like', 'random', 'randperm', 'range', 'ravel', 'real', 'reciprocal', 'reciprocal_', 'relu', 'relu_', 'remainder', 'renorm', 'repeat_interleave', 'res', 'reshape', 'resize_as_', 'resize_as_sparse_', 'result_type', 'rnn_relu', 'rnn_relu_cell', 'rnn_tanh', 'rnn_tanh_cell', 'roll', 'rot90', 'round', 'round_', 'row_stack', 'rrelu', 'rrelu_', 'rsqrt', 'rsqrt_', 'rsub', 'saddmm', 'save', 'scalar_tensor', 'scatter', 'scatter_add', 'searchsorted', 'seed', 'segment_reduce', 'select', 'selu', 'selu_', 'serialization', 'set_anomaly_enabled', 'set_autocast_enabled', 'set_default_dtype', 'set_default_tensor_type', 'set_deterministic', 'set_flush_denormal', 'set_grad_enabled', 'set_num_interop_threads', 'set_num_threads', 'set_printoptions', 'set_rng_state', 'set_vital', 'set_warn_always', 'sgn', 'short', 'sigmoid', 'sigmoid_', 'sign', 'signbit', 'sin', 'sin_', 'sinc', 'sinc_', 'sinh', 'sinh_', 'slogdet', 'smm', 'softmax', 'solve', 'sort', 'sparse', 'sparse_coo', 'sparse_coo_tensor', 'sparse_csr', 'special', 'split', 'split_with_sizes', 'spmm', 'sqrt', 'sqrt_', 'square', 'square_', 'squeeze', 'sspaddmm', 'stack', 'std', 'std_mean', 'stft', 'storage', 'strided', 'sub', 'subtract', 'sum', 'svd', 'svd_lowrank', 'swapaxes', 'swapdims', 'symeig', 'sys', 't', 'take', 'take_along_dim', 'tan', 'tan_', 'tanh', 'tanh_', 'tensor', 'tensor_split', 'tensordot', 'testing', 'textwrap', 'th_dll_path', 'threshold', 'threshold_', 'tile', 'topk', 'torch', 'trace', 'transpose', 'trapz', 'triangular_solve', 'tril', 'tril_indices', 'triplet_margin_loss', 'triu', 'triu_indices', 'true_divide', 'trunc', 'trunc_', 'typename', 'types', 'uint8', 'unbind', 'unify_type_list', 'unique', 'unique_consecutive', 'unsafe_chunk', 'unsafe_split', 'unsafe_split_with_sizes', 'unsqueeze', 'use_deterministic_algorithms', 'utils', 'vander', 'var', 'var_mean', 'vdot', 'version', 'view_as_complex', 'view_as_real', 'vitals_enabled', 'vsplit', 'vstack', 'wait', 'warnings', 'where', 'with_load_library_flags', 'xlogy', 'xlogy_', 'zero_', 'zeros', 'zeros_like']
['Any', 'BFloat16Storage', 'BFloat16Tensor', 'BoolStorage', 'BoolTensor', 'ByteStorage', 'ByteTensor', 'CharStorage', 'CharTensor', 'ComplexDoubleStorage', 'ComplexFloatStorage', 'CudaError', 'DeferredCudaCallError', 'Device', 'Dict', 'DoubleStorage', 'DoubleTensor', 'Event', 'FloatStorage', 'FloatTensor', 'HalfStorage', 'HalfTensor', 'IntStorage', 'IntTensor', 'List', 'LongStorage', 'LongTensor', 'Optional', 'ShortStorage', 'ShortTensor', 'Stream', 'StreamContext', 'Tuple', 'Union', '_CudaBase', '_CudaDeviceProperties', '_Graph', '_StorageBase', '__annotations__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_check_capability', '_check_cubins', '_cudart', '_device', '_device_t', '_dummy_type', '_get_device_index', '_graph_pool_handle', '_initialization_lock', '_initialized', '_is_in_bad_fork', '_lazy_call', '_lazy_init', '_lazy_new', '_queued_calls', '_sleep', '_tls', '_utils', 'amp', 'caching_allocator_alloc', 'caching_allocator_delete', 'can_device_access_peer', 'check_error', 'collections', 'contextlib', 'cudaStatus', 'cudart', 'current_blas_handle', 'current_device', 'current_stream', 'default_generators', 'default_stream', 'device', 'device_count', 'device_of', 'empty_cache', 'get_arch_list', 'get_device_capability', 'get_device_name', 'get_device_properties', 'get_gencode_flags', 'get_rng_state', 'get_rng_state_all', 'has_half', 'has_magma', 'init', 'initial_seed', 'ipc_collect', 'is_available', 'is_initialized', 'list_gpu_processes', 'manual_seed', 'manual_seed_all', 'max_memory_allocated', 'max_memory_cached', 'max_memory_reserved', 'memory', 'memory_allocated', 'memory_cached', 'memory_reserved', 'memory_snapshot', 'memory_stats', 'memory_stats_as_nested_dict', 'memory_summary', 'nccl', 'nvtx', 'os', 'profiler', 'random', 'reset_accumulated_memory_stats', 'reset_max_memory_allocated', 'reset_max_memory_cached', 'reset_peak_memory_stats', 'seed', 'seed_all', 'set_device', 'set_per_process_memory_fraction', 'set_rng_state', 'set_rng_state_all', 'set_stream', 'sparse', 'storage_name', 'stream', 'streams', 'synchronize', 't', 'tensor_name', 'threading', 'torch', 'traceback', 'warnings']
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real', 'to_bytes']
Help on function is_available in module torch.cuda:
is_available() -> bool
Returns a bool indicating if CUDA is currently available.
pycharm
安装pycharm
打开官网:
https://www.jetbrains.com/pycharm/
下载社区版,下载完直接双击,选择安装位置,只有一项需要注意的是将所有的文件设置为以py为后缀结尾的格式,然后直接确定确定确定,就安好了
在pycharm中新建项目
1.打开pycharm
2.点击create new project
3.选择创建位置,设置项目名称
4.设置项目名称之后,选择已有的解释器(Existing interpreter)
5.如果没有找到对应的python解释器,找后面的三个点,选择弹出窗口中Conda Environment,重新设置解释器(定位设置的虚拟环境中的python.exe文件)
6.点击确定创建项目
如何确定项目使用的是我们设置的环境?
1.点击File
2.选择设置(settings)
3.查看当前项目,点击项目名称,查看Project Interpreter
4.Project Interpreter即可查看当前环境以及安装的包
如何在一个项目中新建一个python文件
1.点击项目名称
2.右键new file
3.设置文件名称
Dataset:提取数据并将数据进行编号,在后面读取数据可以根据编号进行读取数据
作用是提供一种方式去获取数据及其label
实现的功能:
1.如何获取每一个数据机器label
2.告诉我们总共有多少数据
Dataloder:对数据进行打包,将一部分数据进行打包
为后面的网络提供不同的数据形式
Tensorboard的使用
1.SummaryWriter
nn.Module
torch.nn.functional与torch.nn的区别:
torch.nn.functional(不需要了解),torch.nn(只掌握它就好)
ceil_model 设置为True时,即如果不足卷积核大小时也要进行池化操作
False时,就不会及进行池化操作