Jdk8 DNS解析

概述

最近在工作中遇到一个问题:我们后台有个接口,会访问外部接口;外部接口配置域名,通过智能DNS进行负载均衡,但是监控的同事告诉我们,所有请求都转发到其中一台机器上了,并没有达到负载均衡的目的;有鉴于此,准备详细了解了下Java中的DNS解析;

注:JDK7和JDK8关于DNS解析的实现有差异,该问题在JDK7下可能不存在;
Java中的DNS解析一般是通过调用下面的方法:

public static InetAddress getByName(String host)
public static InetAddress[] getAllByName(String host)

getByName先调用getAllByName,然后返回地址列表的第一个地址;

下面主要看看getAllByName的实现;

getAllByName

getAllByName会调用getAllByName0方法:

    InetAddress[] addresses = getCachedAddresses(host);

    /* If no entry in cache, then do the host lookup */
    if (addresses == null) {
        addresses = getAddressesFromNameService(host, reqAddr);
    }

    if (addresses == unknown_array)
        throw new UnknownHostException(host);

    return addresses.clone();

可以看到首先会从缓存中获取,如果缓存找不到则调用getAddressesFromNameService进行解析;

private static InetAddress[] getCachedAddresses(String hostname) {
    hostname = hostname.toLowerCase();

    // search both positive & negative caches

    synchronized (addressCache) {
        cacheInitIfNeeded();//如果是第一次调用,执行初始化

        CacheEntry entry = addressCache.get(hostname);
        if (entry == null) {
            entry = negativeCache.get(hostname);
        }

        if (entry != null) {
            return entry.addresses;
        }
    }

    // not found
    return null;
}

既然JDK对IP地址解析有缓存,那么它是如何缓存的呢?缓存策略定义在InetAddressCachePolicy类,摘录其初始化的代码如下:

static {
    Integer tmp = java.security.AccessController.doPrivileged(
      new PrivilegedAction() {
        public Integer run() {
            try {
            //读取JDK目录java.security文件的属性networkaddress.cache.ttl
                String tmpString = Security.getProperty(cachePolicyProp);
                if (tmpString != null) {
                    return Integer.valueOf(tmpString);
                }
            } catch (NumberFormatException ignored) {
                // Ignore
            }
            try {
            //读取-D指定的系统属性sun.net.inetaddr.ttl
               String tmpString = System.getProperty(cachePolicyPropFallback);
                if (tmpString != null) {
                    return Integer.decode(tmpString);
                }
            } catch (NumberFormatException ignored) {
                // Ignore
            }
            return null;
        }
      });

    if (tmp != null) {
        cachePolicy = tmp.intValue();
        if (cachePolicy < 0) {
            cachePolicy = FOREVER;//如果配置的是负数,表示缓存永不过期
        }
        propertySet = true;
    } else {
      //可以通过-Djava.security.manager-Djava.security.policy=security.policy启动安全管理器
         if (System.getSecurityManager() == null) {
            cachePolicy = DEFAULT_POSITIVE;//默认是不启动SecurityManager的,也就是说默认缓存失效时间为30s
        }
    }
    tmp = java.security.AccessController.doPrivileged (
      new PrivilegedAction() {
        public Integer run() {
            try {
            //读取networkaddress.cache.negative.ttl属性,默认是10s
                String tmpString = Security.getProperty(negativeCachePolicyProp);
                if (tmpString != null) {
                    return Integer.valueOf(tmpString);
                }
            } catch (NumberFormatException ignored) {
                // Ignore
            }

            try {
            //读取-D指定的系统属性sun.net.inetaddr.negative.ttl
                String tmpString = System.getProperty(negativeCachePolicyPropFallback);
                if (tmpString != null) {
                    return Integer.decode(tmpString);
                }
            } catch (NumberFormatException ignored) {
                // Ignore
            }
            return null;
        }
      });

    if (tmp != null) {
        negativeCachePolicy = tmp.intValue();
        if (negativeCachePolicy < 0) {
            negativeCachePolicy = FOREVER;
        }
        propertyNegativeSet = true;
    }
}

上面介绍了JVM对ip地址解析的缓存策略和相关的配置,接下来看看,如果缓存找不到,JVM该如何解析ip地址;

getAddressesFromNameService

从上面的代码看到,InetAddress会调用getAddressesFromNameService方法,循环调用nameService的lookupAllHostAddr方法,直到找到结果:
NameService的初始化代码如下:

impl = InetAddressImplFactory.create();

// get name service if provided and requested
String provider = null;;
String propPrefix = "sun.net.spi.nameservice.provider.";
int n = 1;
nameServices = new ArrayList();
//可以通过sun.net.spi.nameservice.provider.n指定自己的DNS 
Provider
provider = AccessController.doPrivileged(
        new GetPropertyAction(propPrefix + n));
while (provider != null) {
    NameService ns = createNSProvider(provider);
    if (ns != null)
        nameServices.add(ns);

    n++;
    provider = AccessController.doPrivileged(
            new GetPropertyAction(propPrefix + n));
}

//如果不单独指定,创建默认的NameService
if (nameServices.size() == 0) {//
    NameService ns = createNSProvider("default");
    nameServices.add(ns);
}

在这里要特别提下Java提供的DNSNameService,该类可以通过下述参数启用:

-Dsun.net.spi.nameservice.provider.1=dns,sun
-Dsun.net.spi.nameservice.nameservers=192.168.1.188

该类会根据sun.net.spi.nameservice.nameservers指定的name server或/etc/resolv.conf文件中配置的name server进行DNS解析;

创建默认的NameService方法代码如下:

if (provider.equals("default")) {
        // initialize the default name service
        nameService = new NameService() {
            public InetAddress[] lookupAllHostAddr(String host)
                throws UnknownHostException {
                return impl.lookupAllHostAddr(host);
            }
            public String getHostByAddr(byte[] addr)
                throws UnknownHostException {
                return impl.getHostByAddr(addr);
            }
        };
    }

根据指定的provider创建NameService的方法如下:

nameService = java.security.AccessController.doPrivileged(
            new java.security.PrivilegedExceptionAction() {
                public NameService run() {
                    Iterator itr = Service.providers(NameServiceDescriptor.class);
                    while (itr.hasNext()) {
                        NameServiceDescriptor nsd
                            = (NameServiceDescriptor)itr.next();
                        if (providerName.
                            equalsIgnoreCase(nsd.getType()+","
                                +nsd.getProviderName())) {
                            try {
                                return nsd.createNameService();
                            } catch (Exception e) {
                                e.printStackTrace();
                                System.err.println(
                                    "Cannot create name service:"
                                     +providerName+": " + e);
                            }
                        }
                    }

                    return null;
                }
            }
        );

对于DNSNameServiceDescriptor,其Type和ProviderName分别为dns,sun;

继续看默认Provider的处理逻辑,可以看到其是通过impl.lookupAllHostAddr(host)方法进行解析的,impl的初始化代码为:

 impl = InetAddressImplFactory.create();
static InetAddressImpl create() {
   return InetAddress.loadImpl(isIPv6Supported() ?
                               "Inet6AddressImpl" : "Inet4AddressImpl");
}

这里以Inet4AddressImpl为例,说明DNS的解析:

public native InetAddress[]
        lookupAllHostAddr(String hostname) throws UnknownHostException;
public native String getHostByAddr(byte[] addr) throws UnknownHostException;

Inet4AddressImp类的方法是native的,是采用本地方法实现的:

JNIEXPORT jobjectArray JNICALL
Java_java_net_Inet4AddressImpl_lookupAllHostAddr(JNIEnv *env, jobject this,
                                                jstring host) {
    const char *hostname;
    jobjectArray ret = 0;
    int retLen = 0;
    int error = 0;
    struct addrinfo hints, *res, *resNew = NULL;

    if (!initializeInetClasses(env))
        return NULL;

    if (IS_NULL(host)) {
        JNU_ThrowNullPointerException(env, "host is null");
        return 0;
    }
    hostname = JNU_GetStringPlatformChars(env, host, JNI_FALSE);
    CHECK_NULL_RETURN(hostname, NULL);

    /* Try once, with our static buffer. */
    memset(&hints, 0, sizeof(hints));
    hints.ai_flags = AI_CANONNAME;
    hints.ai_family = AF_INET;


    error = getaddrinfo(hostname, NULL, &hints, &res);

    if (error) {
        /* report error */
        ThrowUnknownHostExceptionWithGaiError(env, hostname, error);
        JNU_ReleaseStringPlatformChars(env, host, hostname);
        return NULL;
    } else {
        int i = 0;
        struct addrinfo *itr, *last = NULL, *iterator = res;

        while (iterator != NULL) {
            // remove the duplicate one
            int skip = 0;
            itr = resNew;
            while (itr != NULL) {
                struct sockaddr_in *addr1, *addr2;
                addr1 = (struct sockaddr_in *)iterator->ai_addr;
                addr2 = (struct sockaddr_in *)itr->ai_addr;
                if (addr1->sin_addr.s_addr ==
                    addr2->sin_addr.s_addr) {
                    skip = 1;
                    break;
                }
                itr = itr->ai_next;
            }

            if (!skip) {
                struct addrinfo *next
                    = (struct addrinfo*) malloc(sizeof(struct addrinfo));
                if (!next) {
                    JNU_ThrowOutOfMemoryError(env, "Native heap allocation failed");
                    ret = NULL;
                    goto cleanupAndReturn;
                }
                memcpy(next, iterator, sizeof(struct addrinfo));
                next->ai_next = NULL;
                if (resNew == NULL) {
                    resNew = next;
                } else {
                    last->ai_next = next;
                }
                last = next;
                i++;
            }
            iterator = iterator->ai_next;
        }

        retLen = i;
        iterator = resNew;

        ret = (*env)->NewObjectArray(env, retLen, ni_iacls, NULL);

        if (IS_NULL(ret)) {
            /* we may have memory to free at the end of this */
            goto cleanupAndReturn;
        }

        i = 0;
        while (iterator != NULL) {
            jobject iaObj = (*env)->NewObject(env, ni_ia4cls, ni_ia4ctrID);
            if (IS_NULL(iaObj)) {
                ret = NULL;
                goto cleanupAndReturn;
            }
            setInetAddress_addr(env, iaObj, ntohl(((struct sockaddr_in*)iterator->ai_addr)->sin_addr.s_addr));
            setInetAddress_hostName(env, iaObj, host);
            (*env)->SetObjectArrayElement(env, ret, i++, iaObj);
            iterator = iterator->ai_next;
        }
    }

 }

上面的代码一大堆,核心是调用getaddrinfo函数,在getaddrinfo的man文档中有这么一句话:

the application should try using the addresses in the order in which they are returned.  The sorting function used within getaddrinfo() is defined in RFC 3484; the order can be tweaked for a
particular system by editing /etc/gai.conf (available since glibc 2.5).

getaddrinfo返回的地址列表根据RFC3484规定的排序算法进行了排序,如果这样的话,那么返回的地址列表顺序是规定的,那就达不到负载均衡的目的了;

关于这个排序的话题,网上有很多讨论:

  • https://lists.debian.org/debian-glibc/2007/09/msg00347.html
  • https://lists.debian.org/debian-ctte/2007/09/msg00067.html
  • https://daniel.haxx.se/blog/2012/01/03/getaddrinfo-with-round-robin-dns-and-happy-eyeballs/

getaddrinfo的部分代码如下:

int getaddrinfo (const char *__restrict name, const char *__restrict service,
         const struct addrinfo *__restrict hints,
         struct addrinfo **__restrict pai)
{
  int i = 0, j = 0, last_i = 0;
  int nresults = 0;
  struct addrinfo *p = NULL, **end;
  struct gaih *g = gaih, *pg = NULL;
  struct gaih_service gaih_service, *pservice;
  struct addrinfo local_hints;
  
  
  while (g->gaih)
    {
      if (hints->ai_family == g->family || hints->ai_family == AF_UNSPEC)
    {
      j++;
      if (pg == NULL || pg->gaih != g->gaih)
        {
          pg = g;
          i = g->gaih (name, pservice, hints, end);
          if (i != 0)
        {
          /* EAI_NODATA is a more specific result as it says that
             we found a result but it is not usable.  */
          if (last_i != (GAIH_OKIFUNSPEC | -EAI_NODATA))
            last_i = i;
          if (hints->ai_family == AF_UNSPEC && (i & GAIH_OKIFUNSPEC))
            {
              ++g;
              continue;
            }
          freeaddrinfo (p);
          return -(i & GAIH_EAI);
        }
          if (end)
        while (*end)
          {
            end = &((*end)->ai_next);
            ++nresults;
          }
        }
    }
      ++g;
    }
  if (j == 0)
    return EAI_FAMILY;
  if (nresults > 1)
    {
      /* Sort results according to RFC 3484.  */
      struct sort_result results[nresults];
      struct addrinfo *q;
      struct addrinfo *last = NULL;
      char *canonname = NULL;
      for (i = 0, q = p; q != NULL; ++i, last = q, q = q->ai_next)
    {
      results[i].dest_addr = q;
      results[i].got_source_addr = false;
      /* If we just looked up the address for a different
         protocol, reuse the result.  */
      if (last != NULL && last->ai_addrlen == q->ai_addrlen
          && memcmp (last->ai_addr, q->ai_addr, q->ai_addrlen) == 0)
        {
          memcpy (&results[i].source_addr, &results[i - 1].source_addr,
              results[i - 1].source_addr_len);
          results[i].source_addr_len = results[i - 1].source_addr_len;
          results[i].got_source_addr = results[i - 1].got_source_addr;
        }
      else
        {
          /* We overwrite the type with SOCK_DGRAM since we do not
         want connect() to connect to the other side.  If we
         cannot determine the source address remember this
         fact.  */
          int fd = socket (q->ai_family, SOCK_DGRAM, IPPROTO_IP);
          socklen_t sl = sizeof (results[i].source_addr);
          if (fd != -1
          && connect (fd, q->ai_addr, q->ai_addrlen) == 0
          && getsockname (fd,
                    (struct sockaddr *) &results[i].source_addr,
                    &sl) == 0)
        {
          results[i].source_addr_len = sl;
          results[i].got_source_addr = true;
        }
          else
        /* Just make sure that if we have to process the same
           address again we do not copy any memory.  */
        results[i].source_addr_len = 0;
          if (fd != -1)
        close_not_cancel_no_status (fd);
        }
      /* Remember the canonical name.  */
      if (q->ai_canonname != NULL)
        {
          assert (canonname == NULL);
          canonname = q->ai_canonname;
          q->ai_canonname = NULL;
        }
    }
      /* We got all the source addresses we can get, now sort using
     the information.  */
      qsort (results, nresults, sizeof (results[0]), rfc3484_sort);
      /* Queue the results up as they come out of sorting.  */
      q = p = results[0].dest_addr;
      for (i = 1; i < nresults; ++i)
    q = q->ai_next = results[i].dest_addr;
      q->ai_next = NULL;
      /* Fill in the canonical name into the new first entry.  */
      p->ai_canonname = canonname;
    }
  if (p)
    {
      *pai = p;
      return 0;
    }
  if (pai == NULL && last_i == 0)
    return 0;
  return last_i ? -(last_i & GAIH_EAI) : EAI_NONAME;
}

排序是通过rfc3484_sort完成的,后面有时间准备仔细看看其排序规则:

static int
rfc3484_sort (const void *p1, const void *p2)
{
  const struct sort_result *a1 = (const struct sort_result *) p1;
  const struct sort_result *a2 = (const struct sort_result *) p2;
  /* Rule 1: Avoid unusable destinations.
     We have the got_source_addr flag set if the destination is reachable.  */
  if (a1->got_source_addr && ! a2->got_source_addr)
    return -1;
  if (! a1->got_source_addr && a2->got_source_addr)
    return 1;
  /* Rule 2: Prefer matching scope.  Only interesting if both
     destination addresses are IPv6.  */
  int a1_dst_scope
    = get_scope ((struct sockaddr_storage *) a1->dest_addr->ai_addr);
  int a2_dst_scope
    = get_scope ((struct sockaddr_storage *) a2->dest_addr->ai_addr);
  if (a1->got_source_addr)
    {
      int a1_src_scope = get_scope (&a1->source_addr);
      int a2_src_scope = get_scope (&a2->source_addr);
      if (a1_dst_scope == a1_src_scope && a2_dst_scope != a2_src_scope)
    return -1;
      if (a1_dst_scope != a1_src_scope && a2_dst_scope == a2_src_scope)
    return 1;
    }
  /* Rule 3: Avoid deprecated addresses.
     That's something only the kernel could decide.  */
  /* Rule 4: Prefer home addresses.
     Another thing only the kernel can decide.  */
  /* Rule 5: Prefer matching label.  */
  if (a1->got_source_addr)
    {
      int a1_dst_label
    = get_label ((struct sockaddr_storage *) a1->dest_addr->ai_addr);
      int a1_src_label = get_label (&a1->source_addr);
      int a2_dst_label
    = get_label ((struct sockaddr_storage *) a2->dest_addr->ai_addr);
      int a2_src_label = get_label (&a2->source_addr);
      if (a1_dst_label == a1_src_label && a2_dst_label != a2_src_label)
    return -1;
      if (a1_dst_label != a1_src_label && a2_dst_label == a2_src_label)
    return 1;
    }
  /* Rule 6: Prefer higher precedence.  */
  int a1_prec
    = get_precedence ((struct sockaddr_storage *) a1->dest_addr->ai_addr);
  int a2_prec
    = get_precedence ((struct sockaddr_storage *) a2->dest_addr->ai_addr);
  if (a1_prec > a2_prec)
    return -1;
  if (a1_prec < a2_prec)
    return 1;
  /* Rule 7: Prefer native transport.
     XXX How to recognize tunnels?  */
  /* Rule 8: Prefer smaller scope.  */
  if (a1_dst_scope < a2_dst_scope)
    return -1;
  if (a1_dst_scope > a2_dst_scope)
    return 1;
  /* Rule 9: Use longest matching prefix.  */
  if (a1->got_source_addr
      && a1->dest_addr->ai_family == a2->dest_addr->ai_family)
    {
      int bit1 = 0;
      int bit2 = 0;
      if (a1->dest_addr->ai_family == PF_INET)
    {
      assert (a1->source_addr.ss_family == PF_INET);
      assert (a2->source_addr.ss_family == PF_INET);
      struct sockaddr_in *in1_dst;
      struct sockaddr_in *in1_src;
      struct sockaddr_in *in2_dst;
      struct sockaddr_in *in2_src;
      in1_dst = (struct sockaddr_in *) a1->dest_addr->ai_addr;
      in1_src = (struct sockaddr_in *) &a1->source_addr;
      in2_dst = (struct sockaddr_in *) a2->dest_addr->ai_addr;
      in2_src = (struct sockaddr_in *) &a2->source_addr;
      bit1 = ffs (in1_dst->sin_addr.s_addr ^ in1_src->sin_addr.s_addr);
      bit2 = ffs (in2_dst->sin_addr.s_addr ^ in2_src->sin_addr.s_addr);
    }
      else if (a1->dest_addr->ai_family == PF_INET6)
    {
      assert (a1->source_addr.ss_family == PF_INET6);
      assert (a2->source_addr.ss_family == PF_INET6);
      struct sockaddr_in6 *in1_dst;
      struct sockaddr_in6 *in1_src;
      struct sockaddr_in6 *in2_dst;
      struct sockaddr_in6 *in2_src;
      in1_dst = (struct sockaddr_in6 *) a1->dest_addr->ai_addr;
      in1_src = (struct sockaddr_in6 *) &a1->source_addr;
      in2_dst = (struct sockaddr_in6 *) a2->dest_addr->ai_addr;
      in2_src = (struct sockaddr_in6 *) &a2->source_addr;
      int i;
      for (i = 0; i < 4; ++i)
        if (in1_dst->sin6_addr.s6_addr32[i]
        != in1_src->sin6_addr.s6_addr32[i]
        || (in2_dst->sin6_addr.s6_addr32[i]
            != in2_src->sin6_addr.s6_addr32[i]))
          break;
      if (i < 4)
        {
          bit1 = ffs (in1_dst->sin6_addr.s6_addr32[i]
              ^ in1_src->sin6_addr.s6_addr32[i]);
          bit2 = ffs (in2_dst->sin6_addr.s6_addr32[i]
              ^ in2_src->sin6_addr.s6_addr32[i]);
        }
    }
      if (bit1 > bit2)
    return -1;
      if (bit1 < bit2)
    return 1;
    }
  /* Rule 10: Otherwise, leave the order unchanged.  */
  return 0;
}

可以看到,首先根据RFC3484的Rule1~Rule9排序,如果上述规则都未触发,则返回原列表;简单的说,返回结果的顺序是不固定的,有可能是DNS Server返回的顺序,也有可能不是;因此最好的办法是在Java层自己进行控制;

你可能感兴趣的:(Jdk8 DNS解析)