数据结构(12) -- 图的邻接矩阵的DFS和BFS

////////////////////////////////////////////////////////

//图的邻接矩阵的DFS和BFS

////////////////////////////////////////////////////////

#include <iostream>

#include <stdlib.h>

#include <queue>

#define MaxVertexNum 100 //最大顶点数

//#define INFINITY 0  //无穷大设为无符号整数的最大值

typedef char VertexType;  //顶点类型设为字符类型

typedef int EdgeType; ///边的权值设为整形

enum GraphType{DG, UG, DN, UN}; //有向图,无向图,有向网图,无向网图

using namespace std;



typedef struct

{

    VertexType Vertices[MaxVertexNum]; //顶点表

    EdgeType Edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,即边表

    int n, e; //顶点数n和边数e

    enum GraphType GType; 

}MGraph;



void CreateMGraph(MGraph *G)

{

    int  i, j, k, w;

    G->GType = UN;    /* Undirected Network  无向网图  */

    cout << "请输入顶点数和边数(输入格式为:顶点数, 边数):" << endl;

    cin >> G->n >> G->e; /* 输入顶点数和边数 */

    cout << "请输入顶点信息(输入格式为:顶点号<CR>):" << endl;

    for (i = 0; i < G->n; i++)

        cin >> &(G->Vertices[i]); /*  输入顶点信息,建立顶点表  */

    for (i = 0; i < G->n; i++)

        for (j = 0; j < G->n; j++)

            G->Edges[i][j] = 0; /* 初始化邻接矩阵 */

    cout << "请输入每条边对应的两个顶点的序号和权值,输入格式为:i, j, w:" << endl;

    for (k = 0; k < G->e; k++) {

        cin >> i >> j >> w; /* 输入e条边上的权,建立邻接矩阵 */

        G->Edges[i][j] = w;

        G->Edges[j][i] = w; /* 因为无向网图的邻接矩阵是对称的 */

    }

}



void Print(MGraph *G)

{

    cout << "   ";

    for (int i = 0; i < G->n; i++)

        cout << G->Vertices[i] << "  ";

    cout << endl;

    for (int i = 0; i < G->n; i++)

    {

        cout << G->Vertices[i] << "  ";

        for (int j = 0; j < G->n; j++)

        {

            cout << G->Edges[i][j] << "  ";

        }

        cout << endl;

    }

}



//邻接矩阵存储的图 - DFS

bool Visited[100] = { false };

void DFS(MGraph *G, int k)

{

    cout << G->Vertices[k] << " ";

    Visited[k] = true;

    for (int i = 0; i < G->n; i++)

    {

        if (G->Edges[k][i] == 1 && Visited[i] == false)

        {

            DFS(G, i);

        }

    }

}



//邻接矩阵存储的图 - BFS

void BFS(MGraph *G, int k)

{

    bool Visited[100] = { false };

    queue<int> q;

    for (int i = 0; i < G->n; i++)

        Visited[i] = false;



    if (Visited[k] == false) //如果节点未访问

    {

        Visited[k] = true;

        cout << " visit vertex: " << G->Vertices[k] << endl;

        q.push(k); //u入队列

    }

    while (!q.empty())

    {

        int t = q.front();

        q.pop();

        for (int w = 0; w < G->n; w++)

        {

            if (G->Edges[t][w] != 0 && Visited[w] == false)

            {

                Visited[w] = true;

                cout << " visited vertex: " << G->Vertices[w] << endl;

                q.push(w);

            }

        }

    }

}

int main()

{

    MGraph *G = new MGraph;

    CreateMGraph(G);

    Print(G);

    cout << endl;

    DFS(G, 0);

    //BFS(G, 0);

    system("pause");

    return 0;

}

测试截图:

数据结构(12) -- 图的邻接矩阵的DFS和BFS

你可能感兴趣的:(数据结构)