Boosting算法和Adaboost算法的关系

1990年,SChapire就首先构造出一种多项式级的算法,将弱学习算法提升为强学习算法,就是最初的Boosting算法。Boosting意思为提升、加强,现在一般指将弱学习提升为强学习的一类算法。

级联分类器就是将多个强分类器连接在一起进行操作,每一个强分类器都由若干个弱分类器加权组成。 Adaboost(Adaptive Boosting)就是一种级联分类器。

一般情况下一个级联用的强分类器包含20个左右的弱分类器,然后在将10个强分类器级联起来,就构成了一个级联强分类器,这个级联强分类器中总共包括200弱分类器。也有一些情况下不适用级联分类器,就简单的使用一个强分类器的情况,这种情况下一般强分类器都包含200个左右的弱分类器可以达到最佳效果。不过级联分类器的效果和单独的一个强分类器差不多,但是速度上却有很大的提升。

其次,Adaboost是一种迭代算法。初始时,所有训练样本的权重都被设为相等,在此样本分布下训练出一个弱分类器。在第( =1,2,3, …T,T为迭代次数)次迭代中,样本的权重由第 -1次迭代的结果而定。在每次迭代的最后,都有一个调整权重的过程,被分类错误的样本将得到更高的权重。这样分错的样本就被突出出来,得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到新的弱分类器。经过T次循环,得到T个弱分类器,把这T个弱分类器按照一定的权重叠加起来,就得到最终的强分类器。

你可能感兴趣的:(opencv,算法)