ggstatsplot-专为学术绘图而生(一)

作者:白介素2

美图神器ggstatsplot-专为学术论文而生

在CRAN(comprehensive R Achive Netwokrk)中已有13000多个R包了
简单讲ggstatsplot能够提供更为丰富信息的包,其实就是画出高质量的图
不需要我们花费过多的精力去调整绘图细节,举个例子
一般的探索性数据分过程析包括数据可视化与数据统计两个部分,而ggstatsplot正是达到两者结合的目的

举例说明

组间比较-ggbetweenstats

library(ggstatsplot)
library(ggplot2)

p代表参数检验,np代表非参数
mpaa是分类变量,y是数值型变量

head(movies_long)
## # A tibble: 6 x 8
##   title                        year length budget rating  votes mpaa  genre
##                                    
## 1 Shawshank Redemption, The    1994    142     25    9.1 149494 R     Drama
## 2 Lord of the Rings: The Ret~  2003    251     94    9   103631 PG-13 Acti~
## 3 Lord of the Rings: The Fel~  2001    208     93    8.8 157608 PG-13 Acti~
## 4 Lord of the Rings: The Two~  2002    223     94    8.8 114797 PG-13 Acti~
## 5 Pulp Fiction                 1994    168      8    8.8 132745 R     Drama
## 6 Schindler's List             1993    195     25    8.8  97667 R     Drama
ggbetweenstats(
  data = movies_long,
  x = mpaa, # > 2 groups
  y = rating,
  type = "p", # default
  messages = FALSE
)
ggstatsplot-专为学术绘图而生(一)_第1张图片
image.png

默认参数绘图

ggbetweenstats(
  data = movies_long,
  x = mpaa,
  y = rating
)
ggstatsplot-专为学术绘图而生(一)_第2张图片
image.png

配对比较
pairwise.display参数控制曾现的比较,ns无意义,all,所有,s有意义的

ggbetweenstats(
  data = movies_long,
  x = mpaa,
  y = rating,
  type = "np",
  mean.ci = TRUE,
  pairwise.comparisons = TRUE,
  pairwise.display = "s",
  p.adjust.method = "fdr",
  messages = FALSE
)
ggstatsplot-专为学术绘图而生(一)_第3张图片
image.png

调整颜色,主题,可信区间调整,突出值标记
confi.level:可信区间调整,ggtheme主题,pallete:颜色调用
outlier:超出界限标记

ggbetweenstats(
  data = movies_long,
  x = mpaa,
  y = rating,
  type = "r",
  conf.level = 0.99,
  pairwise.comparisons = TRUE,
  pairwise.annotation = "p", 
  outlier.tagging = TRUE,
  outlier.label = title,
  outlier.coef = 2,
  ggtheme = hrbrthemes::theme_ipsum_tw(),
  palette = "Darjeeling2",
  package = "wesanderson",
  messages = FALSE
)
ggstatsplot-专为学术绘图而生(一)_第4张图片
image.png

ggwithinstats组内比较

图还是非常美观,就不去细讲每个参数了,需要时调用即可,这也是作者的意图

ggwithinstats(
  data = WRS2::WineTasting,
  x = Wine, # > 2 groups
  y = Taste,
  pairwise.comparisons = TRUE,
  pairwise.annotation = "p",
  ggtheme = hrbrthemes::theme_ipsum_tw(),
  ggstatsplot.layer = FALSE,
  messages = FALSE
)
ggstatsplot-专为学术绘图而生(一)_第5张图片
image.png

相关性图-ggscatterstats

代码简介,细节丰富

ggscatterstats(
  data = movies_long,
  x = budget,
  y = rating,
  type = "p", # default #<<<
  conf.level = 0.99,
  marginal=F,
  messages = TRUE
)
ggstatsplot-专为学术绘图而生(一)_第6张图片
image.png

其实还可以画很多其它的图,颜值都非常高,这里不再过多介绍,真正做到一图胜千言

总结一下这个包的局限性:

  • 虽然图的信息量大,但有时比如presentation,时间不够,图信息过多反而不利于简明扼要的传达信息
  • 另外就是计算的统计量比较单一

参考资料:官方文档
本期内容就到这里,我是白介素2,下期再见

广而告之

说一个事,鉴于平台在信息传播方面有不足之处,应粉丝要求,白介素2的个人微信平台已经开启,继续聊临床与科研的故事,R语言,数据挖掘,文献阅读等内容。当然也不要期望过高,微信平台目前的定位是作为自己的读书笔记,如果对大家有帮助最好。如果感兴趣, 可以扫码关注下。


qrcode_for_gh_9eaa04438675_258.jpg

相关阅读:
R语言生存分析-02-ggforest
R语言生存分析-01
生存曲线
R语言GEO数据挖掘01-数据下载及提取表达矩阵
R语言GEO数据挖掘02-解决GEO数据中的多个探针对应一个基因
R语言GEO数据挖掘03-limma分析差异基因
R语言GEO数据挖掘04-功能富集分析

如果没有时间精力学习代码,推荐了解:零代码数据挖掘课程

你可能感兴趣的:(ggstatsplot-专为学术绘图而生(一))