- 响应式电子邮件设计指南:MJML实践教程
本文还有配套的精品资源,点击获取简介:响应式设计在电子邮件领域至关重要,确保邮件内容在各种设备上均能良好显示。MJML(MailjetMarkupLanguage)是一个专门用于创建响应式电子邮件模板的开源标记语言。本示例详细介绍了如何使用MJML来设计自适应的邮件模板,涵盖安装工具、使用预定义组件、编译HTML代码等关键步骤。通过实际操作MJML的预定义组件如mj-head、mj-body、mj
- PyQt5窗口背景设置全攻略:三种方法实现精美界面
QSS样式表法(最常用)特点:声明式语法、支持CSS特性、子控件自动继承样式1.纯色背景设置创建主窗口并设置黄色背景win=QMainWindow()win.setObjectName("MainWindow")win.setStyleSheet("#MainWindow{background-color:yellow}")2.背景图片设置(自适应尺寸)使用border-image实现背景图平铺w
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- YOLO13:基于超图增强自适应视觉感知的实时目标检测
alpszero
YOLO计算机视觉应用目标检测人工智能计算机视觉YOLO13
YOLO13:基于超图增强自适应视觉感知的实时目标检测论文:YOLOv13:Real-TimeObjectDetectionwithHypergraph-EnhancedAdaptiveVisualPerception代码:https://github.com/iMoonLab/yolov13YOLOv13主要技术YOLOv13新一代实时检测器,集卓越性能与效率于一身。YOLOv13系列包含四种变
- 自适应滤波技术:信号处理与去噪实战
DataInnovator
本文还有配套的精品资源,点击获取简介:自适应滤波是信号处理中用于消除噪声和提升信号质量的技术。该压缩包包含多种自适应滤波相关的资源,如MATLAB代码文件和音频样本。自适应滤波算法通过动态调整滤波器参数来适应信号变化,优化滤波性能。其中,Wiener自适应滤波器是常见的实现方式。谱减法作为自适应去噪的一种策略,利用信号在频域中的不同分布特性进行降噪。用户可以通过执行代码和使用GUI来测试和观察自适
- 【语音去噪】基于IIR+FIR+自适应滤波LMS语音去噪附Matlab代码
天天Matlab代码科研顾问
matlab语音识别开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍语音去噪是语音信号处理领域中的一个核心问题,其目标是从含噪语音信号中有效地去除噪声成分,从而提高语音质量和可懂度。传统的语音去噪方法,如谱减法、维纳滤波等,存在诸多不足,例如音乐噪声、残余噪声等问题。近年来,基于I
- 动态知识图谱在GEO优化中的核心价值与实施路径
GEO优化助手
GEO优化AI搜索优化生成式引擎优化知识图谱人工智能ai搜索引擎
动态知识图谱在GEO优化中的核心价值与实施路径一、动态知识图谱的定义与技术背景1.定义与特性动态知识图谱(DynamicKnowledgeGraph,DKG)是一种基于图的语义网络,通过实体-关系-属性的三元组结构描述现实世界中的知识,并具备以下核心特性:实时性:通过API接口、爬虫技术或用户行为日志实时捕获最新数据(如产品参数更新、用户评价、市场趋势)。自适应性:利用机器学习算法(如图神经网络、
- 无源域自适应综合研究【2】
这篇论文聚焦于无监督无源域适应(SFUDA),全面梳理了该领域的研究现状与未来方向。SFUDA使预训练模型在无需访问原始训练数据的情况下,适应一个新的未标记域。迁移学习可分为三种不同的范式(i)归纳式迁移学习,其中目标任务与源任务不同,但目标域的标签是可获取的。(ii)无监督迁移学习,其中目标任务与源任务不同,且源域和目标域的标签均不可获取。(iii)直推式迁移学习,其中源任务和目标任务是相同的但
- LightRAG进阶:跨域知识库构建与Agent协同推理实战
目录一、架构演进:从单域RAG到跨域智能体协同二、跨域知识库构建实战(四步落地)步骤1:异构数据联邦接入步骤2:增量更新热加载机制三、Agent协同推理引擎(工业级代码)核心Agent结构(TypeScript实现)流式响应处理(WebSocket实现)四、性能压测数据(百万级文档场景)五、生产级部署方案(安全合规)安全审计关键点K8s部署拓扑六、技术前瞻:通往自适应RAG框架附录:完整技术图谱如
- 【论文精读】AGCRN-自适应图卷积循环神经网络
打酱油的葫芦娃
时序预测算法时空预测GCNGRUAGCRN交通预测
AGCRN模型是新南威尔士大学和悉尼科技大学的Bai等人发表在NeurIPS2020NeurIPS2020NeurIPS2020会议上的自适应图卷积循环神经网络,论文题目为:《AdaptiveGraphConvolutionalRecurrentNetworkforTrafficForecasting》,文章地址为:
- Transformer危!谷歌MoR架构发布:内存减半推理速度还翻倍
2501_92765346
transformer架构深度学习
超越Transformer,谷歌推出全新底层架构——Mixture-of-Recursions(MoR),注意不是MoE,它能推理速度提高2倍,而KV内存直接减半!而且AllinOne,首次在单一框架中实现,用同一组参数处理不同任务的同时,进行动态分配计算资源。就像给LLM开了个双层增强buff,模型性能和效率全都要。谷歌DeepMind联合KAISTAI、Mila人团队通过统一参数共享、自适应递
- MySQL索引机制解析:B+树、索引类型与优化策略
hdzw20
mysql复习mysqlb树数据库
MySQL索引机制解析:B+树、索引类型与优化策略索引是MySQL数据库中提高查询效率的关键。深入理解索引的底层机制、不同类型及其优化策略,对于数据库性能调优和面试准备都至关重要。本文将围绕B+树、聚簇索引与非聚簇索引、索引下推、覆盖索引以及自适应哈希索引等核心概念进行阐述。1.B+树vsB树:为何MySQL选择B+树?B树(B-tree)和B+树(B±tree)都是常用的多路平衡查找树,它们旨在
- 基于 Vue3 + ECharts 实现渐变分段折线图:支持动态区间、响应式渲染与颜色控制
saadiya~
echarts信息可视化前端
在数据可视化项目中,折线图是最常见的图表类型之一,而通过颜色分段渐变可以让用户更加直观地感知数据的变化趋势和区间风险。本文将带你实战一个基于Vue3+ECharts的渐变分段折线图组件,支持传入valueList控制每段颜色,适配多种数据类型,实现图表的动态更新与响应式自适应。一、效果预览与场景说明该组件可应用于以下场景:空气质量指标(AQI)路况拥堵指数(如:0-0.5畅通,0.5-1一般,1-
- Java性能监测工具JMC的使用介绍
一、JMC介绍JMC是源自JRockitJVM的一套监控和管理工具,Oracle在发布JAVA7u4(Java7Update40)时将其包含在JDK中,用户不再需要单独下载。使用JMC可以监视和管理Java应用程序,不会导致相关工具类的大幅度性能开销,它使用为Java虚拟机(JVM)的普通自适应动态优化收集的数据。官方地址:https://www.oracle.com/java/technolog
- Flutter瀑布流布局深度实践:打造高性能动态图片墙
本文将深入探讨如何在Flutter中实现高性能瀑布流布局,解决动态高度内容展示的核心难题,并带来卓越的用户体验。引言:瀑布流布局的魅力瀑布流布局(Pinterest-stylelayout)已成为现代应用展示图片和内容的黄金标准。它通过错落有致的排列方式,自适应内容高度的特点,以及无限滚动的交互体验,为用户创造了流畅自然的浏览感受。在Flutter中实现高性能瀑布流需要解决几个核心挑战:动态高度计
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- [论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制
王莽v2
机器人神经网络神经网络算法控制器
[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制摘要本文研究了在水平面内运动的全驱动自主水下机器人的轨迹跟踪问题。在我们的控制设计中考虑了外部干扰、控制输入非线性和模型不确定性。基于离散时间域的动力学模型,两个神经网络(包括一个临界神经网络和一个作用神经网络)被集成到我们的自适应控制设计中。引入临界神经网络来评价设计的控制器在当前时间步长内的长期性能,并利用作用神经网络来补偿未知动
- 【舰艇控制】基于matlab具有不确定性和扰动的水面舰艇的自适应有限时间平滑非线性滑模跟踪控制【含Matlab源码 13748期】复现含文献
海神之光
Matlab路径规划(进阶版)matlab
欢迎来到海神之光博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式Matlab毕设:Matlab毕设系列–说明期刊发表:发表北大核心,SCI不是梦!!⛳️座右铭:行百里者,半于九十。更多Matlab路径规划仿真内容点击①Matlab路径规划(进阶版)②付费专栏Matlab路径规划(初级版)⛳️关注
- 智慧城管新突破:陌讯动态量化技术实现端侧模型压缩20倍
2501_92487735
目标跟踪人工智能计算机视觉算法目标检测视觉检测边缘计算
开篇痛点深夜暴雨中的违规占道经营检测误报率超60%,光照反射干扰导致传统YOLOv5召回率暴跌——这是某省会城市智慧城管项目的真实困境。当算法工程师面对复杂城市场景时,环境干扰、小目标密集、实时性要求构成三重技术难关。技术解析:陌讯自适应多模态架构传统单阶段检测器在雨天场景失效的核心原因,在于固定感受野难以适应尺度突变目标。陌讯算法引入动态梯度调制机制,通过特征金字塔的跨层权重自适应调整,显著提升
- 解锁Prompt+DevOps新姿势:终端系统重塑的三大核心策略
文章目录引言:Prompt驱动的DevOps范式迁移核心策略一:智能决策流水线构建横向架构对比纵向实现流程Python实现示例核心策略二:自适应终端部署体系TypeScript客户端实现YAML部署配置模板核心策略三:智能运维闭环构建安全审计实现方案性能对比分析技术前瞻性分析附录:完整技术图谱技术架构部署验证引言:Prompt驱动的DevOps范式迁移在云原生与AI工程化交汇的今天,Prompt技
- 2025前端面试题全攻略:高频考点解析与实战指南
助力金三银四跳槽季,覆盖90%大厂核心考点,技术进阶+面试技巧双提升一、HTML/CSS核心篇1.语义化与布局实战问题1:如何用HTML5语义化标签优化新闻详情页?答案要点:使用包裹主体内容,划分章节标记发布时间,+处理图文SEO优势:提升关键内容权重,增强可访问性问题2:实现等间距三栏布局(中间自适应).container{display:flex;gap:20px;/*关键:替代margin方
- 对于页面适配,你应该使用px还是rem
мо仙堡杠把子灬
css做一个有知识的流氓
其实一切都还好,没有那么糟糕。css中的单位很多,%、px、em、rem,以及比较新的vw、vh等。每个单位都有特定的用途,比如当需要设置一个矩形的宽高比为16:9,并且随屏幕宽度自适应时,除了用%,其他单位是很难做到的。所以不存在说某个单位是错误的,某个单位是最好的这种说法。那本文说的页面适配,指的是同样的布局,在不同大小的屏幕上怎么进行缩放、控制间距、宽高、字号等大小。页面适配的方式有很多:使
- KAIST:LLM混合递归推理
大模型任我行
大模型-推理优化人工智能自然语言处理语言模型论文笔记
标题:Mixture-of-Recursions:LearningDynamicRecursiveDepthsforAdaptiveToken-LevelComputation来源:arXiv,2507.10524摘要缩放语言模型解锁了令人印象深刻的能力,但伴随的计算和内存需求使训练和部署都很昂贵。现有的效率工作通常针对参数共享或自适应计算,留下了如何同时实现两者的问题。我们引入了混合递归(MoR
- 嵌入式学习-PyTorch(8)-day24
LGGGGGQ
学习pytorch深度学习
torch.optim优化器torch.optim是PyTorch中用于优化神经网络参数的模块,里面实现了一系列常用的优化算法,比如SGD、Adam、RMSprop等,主要负责根据梯度更新模型的参数。️核心组成1.常用优化器优化器作用典型参数torch.optim.SGD标准随机梯度下降,支持momentumlr,momentum,weight_decaytorch.optim.Adam自适应学习
- 【AI论文】CLiFT:面向计算高效与自适应神经渲染的压缩光场标记
摘要:本文提出了一种神经渲染方法,该方法将场景表示为“压缩光场标记(CLiFTs)”,以保留场景丰富的外观和几何信息。CLiFT通过压缩标记实现计算高效的渲染,同时能够通过调整标记数量来表征场景,或利用单个训练好的网络渲染新视角。具体而言,给定一组图像,多视图编码器会根据相机位姿对图像进行标记化处理。潜在空间K均值聚类算法利用这些标记选取一组精简的光线作为聚类中心。随后,多视图“压缩器”将所有标记
- 2025年UDP应用抗洪指南:从T级清洗到AI免疫,实战防御UDP洪水攻击
一次未防护的UDP暴露,可能让日活百万的应用瞬间瘫痪,损失超千万2025年,随着物联网僵尸网络规模指数级增长及AI驱动的自适应攻击工具泛滥,UDP洪水攻击峰值已突破8Tbps,单次攻击成本却降至50元以下。更致命的是,70%的UDP攻击伴随CC攻击形成混合打击,传统防护体系几近失效。本文将揭秘攻击者最新武器库,并分享一套经头部企业验证的立体化防御方案。一、2025年UDP洪水攻击的三大致命升级1.
- 前后端分离式项目架构流程(爆肝三万字)
信计2102罗铠威
javaEE系列专栏前后端分离式架构servlet后端前端框架项目开发流程
文章目录个人主页:信计2102罗铠威JavaEE系列专栏前言:【前端】先创建Vue-cli项目,请选择此项目【创建路由】打开命令行工具,进入你的项目目录,输入下面命令。1.创建router目录~创建index.js文件,在其中配置路由2.在APP.vue中添加路由视图3.在main.js中配置路由【配置ElementUI】【如何使背景图片最大自适应】【登录组件模板】【注册组件模板】【创建后端项目+
- 磁悬浮轴承平动控制的核心技术解析:从PID到自适应鲁棒控制
FanXing_zl
磁悬浮轴承磁悬浮磁悬浮轴承控制磁悬浮磁悬浮轴承磁悬浮控制算法
在高速旋转机械的王国里,平动精度决定了系统的生死存亡,而磁悬浮轴承正是这一领域的“无接触舞者”。磁悬浮轴承作为革命性的无接触支承技术,彻底改变了传统机械轴承的摩擦、磨损和润滑限制。其核心优势在于通过电磁力实现转子的稳定悬浮,而平动控制则是保障转子在轴向和径向精确悬浮的核心技术。本文将深入解析平动控制的技术原理、实现路径与发展趋势。01磁悬浮轴承平动控制的基本原理磁悬浮轴承系统是一个典型的机电一体化
- 【MySQL】性能优化实战指南:释放数据库潜能的艺术
文章目录MySQL性能优化实战指南:释放数据库潜能的艺术引言为什么需要MySQL性能优化?性能优化基础知识MySQL性能瓶颈分析1.硬件资源瓶颈2.MySQL内部瓶颈优化配置策略大全内存配置优化InnoDB缓冲池配置查询缓存配置连接和线程配置磁盘I/O优化InnoDB存储引擎配置临时表配置独特优化创意配置创意1:分层存储优化创意2:动态配置自适应创意3:负载感知配置高级优化技巧并行处理优化索引和查
- AI产品经理面试宝典第30天:AI+教育个性化学习与知识图谱相关面试题的解答指导
TGITCIC
AI产品经理一线大厂面试题人工智能产品经理AI产品经理面试大模型产品经理面试AI面试大模型面试
自适应学习系统如何实现千人千面?面试官:请用产品视角解释AI自适应学习系统的核心逻辑你的回答:自适应学习系统本质是构建"数据-模型-决策"的闭环。以沪江Hitalk为例,其通过12级能力评估体系采集学员的听、说、读、写数据,利用知识图谱建立知识点关联网络。当学员完成"实景演练-诊断反馈-学习包推送"的完整链路时,系统会动态调整知识图谱权重,形成个性化学习路径。面试官追问:如何验证个性化效果?回答:
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1