【Leetcode每日一题】48. 旋转图像(数组)

Leetcode 每日一题
题目链接: 48. 旋转图像
难度: 中等
解题思路: 分为两步,首先将矩阵matrix的上下行交换(第一行和最后一行,第二行和倒数第二行)。这样做完后可以发现得到的矩阵只需要进行转置就可以得到旋转90°的结果。
( a 00 a 01 a 10 a 11 ) ∗ ( 0 1 1 0 ) = s w a p ( a 10 a 11 a 00 a 01 ) ⟶ T r a n s p o s ( a 10 a 00 a 11 a 01 ) \begin{gathered} \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix} * \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \stackrel{swap}= \begin{pmatrix} a_{10} & a_{11} \\ a_{00} & a_{01} \end{pmatrix} \stackrel{Transpos}{\longrightarrow} \begin{pmatrix} a_{10} & a_{00} \\ a_{11} & a_{01} \end{pmatrix} \end{gathered} (a00a10a01a11)(0110)=swap(a10a00a11a01)Transpos(a10a11a00a01)
题解:

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """


        N = len(matrix)
        for i in range(N//2):
            matrix[i], matrix[N - i - 1] = matrix[N - i - 1], matrix[i]
        
        for i in range(N):
            for j in range(i + 1, N):
                matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]

你可能感兴趣的:(Leetcode,leetcode,matrix,线性代数)