import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
print type(a)
py2:
py3:
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> np.zeros(2)
array([0., 0.])
np.ones(3)
array([1., 1., 1.])
np.empty(2)
np.arange(100)
arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])
np.sort(arr)
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([5, 6, 7, 8])
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> a = np.arange(6)
>>> print(a)
[0 1 2 3 4 5]
>>> b = a.reshape(3, 2)
>>> print(b)
[[0 1]
[2 3]
[4 5]]
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False])
a = np.arange(12)**2
print a
i = np.array([1, 1, 3, 1, 5, 1])
print a[i]
[ 0 1 4 9 16 25 36 49 64 81 100 121]
[ 1 1 9 1 25 1]
>>> data = np.array([1, 2, 3])
>>> data[1]
2
>>> data[0:2]
array([1, 2])
>>> data[1:]
array([2, 3])
>>> data[-2:]
array([2, 3])
>>> print(a[a < 5])
[1 2 3 4]
a = np.arange(12)**2
d = a.copy() # a new array object with new data is created
d is a #false
import pandas as pd
df = pd.DataFrame(
{
"Name": [
"Braund, Mr. Owen Harris",
"Allen, Mr. William Henry",
"Bonnell, Miss. Elizabeth",
],
"Age": [22, 35, 58],
"Sex": ["male", "male", "female"],
}
)
print df
Age Name Sex
0 22 Braund, Mr. Owen Harris male
1 35 Allen, Mr. William Henry male
2 58 Bonnell, Miss. Elizabeth female
ages = pd.Series([22, 35, 58], name="Age")
df["Age"]
Out[4]:
0 22
1 35
2 58
Name: Age, dtype: int64
titanic.iloc[9:25, 2:5]
titanic = pd.read_csv("data/titanic.csv")
titanic.to_excel("titanic.xlsx", sheet_name="passengers", index=False)
titanic = pd.read_excel("titanic.xlsx", sheet_name="passengers")
above_35 = titanic[titanic["Age"] > 35]
air_quality = pd.concat([air_quality_pm25, air_quality_no2], axis=0)