安装Anaconda、Pycharm这些都是最基本的东西,写详细步骤没什么意义,仅记录一些重要的步骤/命令。
conda create -n pytorch python=3.7
这个过程中会自动安装ca-certificates、pip、openssl、python、setuptools、sqlite、vc、vs2015_runtime、wheel和wincertstore等基础包/工具。中间因为网络原因断了没关系,重来会接着之前已经完成的继续。
2. 查看GPU算力和相关版本
https://developer.nvidia.com/cuda-gpus
查看GPU的驱动版本、CUDA版本
cd C:\Program Files\NVIDIA Corporation\NVSMI
nvidia-smi //查看软件版本
nvdebugdump -l//查看硬件设备列表
conda install pytorch torchvision cudatoolkit=x.x -c pytorch // 10.2现在(2019.06.15)还不支持,10,0可以
离线包
https://pytorch.org/get-started/previous-versions/。 如果是离线安装,记得安装这些包中必要。
验证torch
python
import torch
torch.Tensor()
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import time
import pdb
def showimg(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
if __name__ == '__main__':
CUDA_VISIBLE_DEVICES = 1
device = torch.device("cpu")
print(device)
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True,num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# show image for test
dataiter = iter(trainloader)
images, labels = dataiter.next()
showimg(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
#torch.cuda.synchronize()
start = time.time()
#CNN
net = Net()
#net = nn.DataParallel(net)
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
#print("Outside: input size", inputs.size(), "output_size", outputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss/2000))
running_loss = 0.0
print("finished training")
#torch.cuda.synchronize()
end = time.time()
print('Time spent %2d ms' % (end - start))
# 测试
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
images.cpu()
showimg(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
# 查看总体准确率
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: %d %%' % (100 * correct/total))
# 查看十个类别每一类的总体准确率
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted==labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i]/class_total[i]))