- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- Pytorch深度学习入门基础(二):python 编辑器的选择、 安装及配置( pycharm、 jupyter)
慕奕宸
深度学习深度学习pythonpytorch
目录一、下载pycharm1.下载pycharm2.pycharm配置3.检查pycharm环境是否配置好二、Jupyter安装三、常见问题:1.为什么torch.cuda.isavailable()为False2.无法定位程序输入点现在来开一个专栏,关于学习Pytorch深度学习的入门基础,分为好几期,我会慢慢更新,希望大家可以互相支持一下,相互学习,相互进步!下面是这个专栏的所有内容,大家可以
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- AI人工智能深度学习入门指南:从基础到实践_副本
AI大模型应用实战
C人工智能深度学习ai
AI人工智能深度学习入门指南:从基础到实践关键词:人工智能、机器学习、深度学习、神经网络、梯度下降、反向传播、实战案例摘要:本文是为零基础或初级学习者打造的深度学习入门指南。我们将从“人工智能-机器学习-深度学习”的关系讲起,用“教机器人认猫”的故事串联核心概念,结合生活比喻(如“多层蛋糕”解释神经网络)、数学公式(如梯度下降的“下山游戏”)和Python实战代码(用Keras实现手写数字识别),
- 深度学习入门指南:从基础概念到代码实践
软考和人工智能学堂
人工智能#深度学习Python开发经验深度学习人工智能
深度学习入门指南:从基础概念到代码实践1.深度学习概述深度学习是机器学习的一个分支,它通过模拟人脑神经元的工作方式,构建多层次的神经网络模型来处理复杂的数据模式。与传统机器学习方法相比,深度学习能够自动从原始数据中学习特征表示,无需过多的人工特征工程。深度学习已经在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展。例如,ImageNet竞赛中深度学习模型的识别准确率已经超过人类水平,而GP
- 深度学习入门(2):alexnet
qq_776882262
深度学习人工智能
引言主要讲下alexnet里的几个方法,后面深度学习的代码部分应该都是借用别人的,整体安排是从简单到难。本篇借鉴Pytorch之AlexNet花朵分类_基于alexnet的花卉分类识别系统-CSDN博客,如果需要学习直接参考这篇就好了,本文只是作为本人复习记录。正文AlexNet是深度学习时代的开端,它用一场决定性的胜利,证明了深度卷积神经网络在计算机视觉中的巨大潜力。单层alexnet网络架构:
- 深度学习入门(3):vgg16
qq_776882262
深度学习人工智能
引言相比于alexnet,vgg16进一步优化了这个黑盒模型,用实验的方式证明了哪些模块有效,哪些模块对检测效果提升有限。奠基了卷积神经网络一些基础的模块。本文参考pytorch实战7:手把手教你基于pytorch实现VGG16_vgg16pytorch-CSDN博客,此处只做记录供本人复习记录。正文VGG16创新点:1.使用小卷积核堆叠代替大卷积核VGG16采用多个连续的3×3小卷积核堆叠,而不
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 【大模型入门指南 10】大模型推理部署:vLLM和llama.cpp
青松ᵃⁱ
LLM入门系列llama
【大模型入门指南】系列文章:【大模型入门指南01】深度学习入门【大模型入门指南02】LLM大模型基础知识【大模型入门指南03】提示词工程【大模型入门指南04】Transformer结构【大模型入门指南05】LLM技术选型【大模型入门指南06】LLM数据预处理【大模型入门指南07】量化技术解析【大模型入门指南08】微调和分布式训练【大模型入门指南09】LLM和多模态模型高效推理实践【大模型入门指南1
- 深度学习入门:从零搭建你的第一个神经网络
layneyao
ai深度学习神经网络人工智能
深度学习入门:从零搭建你的第一个神经网络系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录深度学习入门:从零搭建你的第一个神经网络摘要引言第一章:神经网络基础原理1.1神经元模型1.2反向传播算法1.3激活函数对比第二章:开发环境搭建指南2.1硬件要求2.2软件环境2.2.1Anaconda配置2.2.2PyTorch安装2.2.3TensorFlo
- 深度学习入门:如何从零开始搭建自己的深度学习模型?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介深度学习(DeepLearning)近几年已经成为人们关注的热点话题。从2012年的ImageNet竞赛开始,激起了众多研究者的兴趣,也带来了越来越多的应用场景。随着技术的飞速发展,深度学习已经成为了各个领域最具潜力的技术。作为一名AI科研工作者,了解、掌握深度学习相关知识可以帮助你更好地理解并解决实际问题。本文将全面介绍深度学习的基础知识、技术要点及其应用。文
- 第6篇:深度学习入门——神经网络基础
CarlowZJ
AI+Python深度学习神经网络人工智能
目录一、前言二、概念讲解(一)深度学习:人工智能皇冠上的明珠(二)神经网络:深度学习的微观世界三、神经网络的基本组件:构建智能的积木(一)神经元:智能的基本单元(二)权重与偏置:连接的智慧(三)激活函数:非线性的魔法(四)损失函数:衡量差距的标尺(五)优化器:攀登优化高峰的向导四、前向传播与反向传播:神经网络的智慧流转(一)前向传播:信息的逐层传递(二)反向传播:误差的逆向追溯五、代码示例:搭建你
- 【深度学习入门篇 ②】Pytorch完成线性回归!
小森( ﹡ˆoˆ﹡ )
深度学习入门篇线性回归算法回归
嗨,大家好,我是小森(﹡ˆoˆ﹡)!易编橙·终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者。易编橙:一个帮助编程小伙伴少走弯路的终身成长社群!上一部分我们自己通过torch的方法完成反向传播和参数更新,在Pytorch中预设了一些更加灵活简单的对象,让我们来构造模型、定义损失,优化损失等;那么接下来,我们一起来了解一下其中常用的API
- day33 python深度学习入门
xiaohanbao09
pynotepython深度学习机器学习pandas人工智能学习
目录深度学习入门:PyTorch实现鸢尾花分类一、环境搭建1.创建Python环境2.安装必要的库3.检查CUDA环境二、数据准备1.加载数据集2.数据预处理3.转换为PyTorch张量三、模型构建1.定义模型结构2.定义损失函数和优化器四、模型训练1.训练过程2.训练结果五、结果可视化六、总结在深度学习的旅程中,神经网络是不可或缺的核心工具之一。今天,我将通过一个简单的项目,使用PyTorch框
- 遥感深度学习——基于deeplabv3+和GID数据集(1)
全域智图
深度学习人工智能
博主最近准备进行深度学习入门,因为是做遥感方向的,经过多重考虑,算法最后选择了deeplabv3+。DeepLabV3+是由谷歌提出的一种用于图像语义分割的深度学习模型。它在DeepLabV3的基础上,加入了编码器-解码器结构,以提高分割结果的边缘细节和空间分辨率。以下是DeepLabV3+的主要特点:编码器-解码器结构:编码器部分提取图像的高层次语义特征,解码器部分逐步恢复图像的空间细节,提高分
- 深度学习入门:从理论到实战的详细指南
人工智能教程
深度学习人工智能算法目标跟踪机器学习YOLO线性回归
的高效学习和理解。对于初学者来说,深度学习的学习曲线可能会显得有些陡峭,但只要掌握正确的方法和步骤,就能轻松入门。本文将为你提供一份从理论到实战的详细指南,帮助你快速掌握深度学习的核心要点。一、深度学习是什么?(一)定义深度学习是机器学习的一个子领域,它通过构建多层的神经网络来学习数据中的复杂模式。与传统的机器学习算法相比,深度学习能够自动提取数据的特征,而不需要人工设计复杂的特征工程。这种自动特
- 深度学习入门:基于 Python 的理论与实现笔记
u013244720
深度学习python笔记
深度学习入门:基于Python的理论与实现笔记在VSCode中运行代码替换库搜索路径#sys.path.append(os.pardir)#为了导入父目录而进行的设定sys.path.append(os.getcwd())替换文件路径#withopen("sample_weight.pkl",'rb')asf:withopen(os.getcwd()+"/ch03/sample_weight.pk
- pytorch深度学习入门(15)之-使用onnx模型量化
码农呆呆
深度学习人工智能pytorch深度学习python神经网络
量化ONNX模型内容量化概述ONNX量化表示格式量化ONNX模型基于变压器的模型Transformer基于变压器的模型GPU上的量化常问问题量化概述ONNX运行时中的量化是指ONNX模型的8位线性量化。在量化期间,浮点值被映射到以下形式的8位量化空间:val_fp32=scale*(val_quantized-zero_point)scale是一个正实数,用于将浮点数映射到量化空间。计算方法如下:
- 深度学习入门--基于Python的理论与实现--Python入门
语文天才高斯
python开发语言人工智能深度学习
第一章Python入门1.1Python是什么Python是一种高级编程语言,由GuidovanRossum于1989年创建,并在1991年正式发布。Python具有以下特点:易读易写:Python语法简洁,代码可读性强,使开发者能够更专注于问题本身。跨平台:Python可以在Windows、Linux和macOS上运行,具有良好的可移植性。丰富的库:Python生态系统中包含大量的第三方库,如N
- 【深度学习入门_NLP自然语言处理】序章
沉默的舞台剧
AI深度学习自然语言处理人工智能
本部分开始深度学习第二大部分NLP章节学习,找了好多资料,终于明确NLP的学习目标了,介于工作之余学习综合考量,还是决定以视频学习为主+后期自主实践为主吧。分享一个总图,其实在定位的时候很迷茫,单各章节领域其实都是很大的范畴,每个部分都是需要专精的,所以在做计划的时候很头大…千里之行始于足下吧,话不多数,直接上NLP的学习应用目标:学习教程的话参照B站实战结合的这个教程【2025NLP自然语言处理
- 具身智能零碎知识点(三):深入解析 “1D UNet”:结构、原理与实战
墨绿色的摆渡人
具身智能零碎知识点pytorch人工智能pythontransformer具身智能
深入解析“1DUNet”:结构、原理与实战【深度学习入门】1DUNet详解:结构、原理与实战指南一、1DUNet是什么?二、核心结构与功能1.整体架构2.编码器(Encoder)3.解码器(Decoder)4.跳跃连接(SkipConnection)5.瓶颈层(Bottleneck)三、数学原理与数值示例1.1D卷积运算2.编码-解码流程四、PyTorch代码实现1.完整模型代码2.使用示例五、实
- 使用Python学习AI的学习攻略
liushangzaibeijing
AI学习python学习人工智能
基于python的AI学习一、夯实基础二、数学基础三、机器学习基础四、深度学习入门五、进阶学习六、学习资源推荐七、实践项目一、夯实基础对于已经掌握Python基础语法的学习者来说,进一步利用Python学习AI需要夯实以下基础:变量和数据类型:包括整数、浮点数、字符串、列表、字典、元组等。条件语句和循环:熟练使用if-else语句和for、while循环。函数:理解函数的定义、调用以及参数传递。面
- 深度学习入门(三):神经网络的学习
WhyNot?
深度学习深度学习神经网络学习
文章目录前言人类思考VS机器学习VS深度学习基础术语损失函数常用的损失函数均方误差MSE(MeanSquareError)交叉熵误差(CrossEntropyError)mini-batch学习为何要设定损失函数数值微分神经网络学习算法的实现两层神经网络的类参考资料前言机器学习的过程通常分为学习(从训练数据中自动获取权重参数的过程)和推理(利用学习到的权重参数对新的数据进行预测)两个环节。本文将主
- 深度学习入门:从神经网络基础到简单实现
Evaporator Core
人工智能#深度学习Python开发经验深度学习神经网络人工智能
深度学习作为人工智能领域最令人兴奋的技术之一,已经在图像识别、自然语言处理、语音识别等多个领域取得了突破性进展。本文将深入浅出地介绍深度学习的基本概念,并通过Python代码实现一个简单的神经网络模型,帮助读者建立直观理解并迈出实践第一步。神经网络的基本原理神经网络的核心思想源自对人类大脑工作方式的简化模拟。想象一下,当你第一次学习骑自行车时,大脑会不断接收来自视觉、平衡感等多方面的信号,经过一系
- PyTorch深度学习入门与实战教程
openbiox
本文还有配套的精品资源,点击获取简介:深度学习是AI的核心技术,基于神经网络对数据建模以实现学习和预测。PyTorch是一个灵活易用的开源深度学习框架,适合初学者和研究人员进行实验开发。教程涵盖了从基础概念到模型训练、验证、测试的完整流程,包括张量操作、动态计算图、数据预处理、神经网络构建、优化器使用、训练循环、模型保存加载以及CNN和RNN等关键网络结构的应用实践。通过实例项目如文本分类、图像识
- AI入门书籍推荐
撬动未来的支点
深度学习深度学习人工智能
漫画机械学习入门((日)大关真之戴凤智张鸿涛孟宇(译))深度学习入门:基于Python的理论与实现深度学习的数学:使用Python语言[转换版]([美]罗纳德·T.纽塞尔)
- 手写数字识别(深度学习小实践)
我是来学习的你们要干什么
深度学习人工智能pycharmpython机器学习神经网络
小白学习ing文章目录前言一、神经网络学习与实践1.学习2.推理二、手写数字识别1、读入mnist数据集(学习)2、神经网络的推理改进→批处理前言非常简单的深度学习小实践,没有用框架,仅使用简单的Python。参考书籍《深度学习入门:基于Python的理论与实现》一、神经网络学习与实践1.学习训练数据进行权重参数的学习2.推理使用学习到的参数,对输入数据进行分类二、手写数字识别1、读入mnist数
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发