python机器学习ch01

python机器学习

last modified by xiaoyao

个人主页

python机器学习ch01_第1张图片

Python Machine Learning - Code Examples

Chapter 1 - Giving Computers the Ability to Learn from Data

Overview

  • Building intelligent machines to transform data into knowledge
  • The three different types of machine learning
    • Making predictions about the future with supervised learning
      • Classification for predicting class labels
      • Regression for predicting continuous outcomes
    • Solving interactive problems with reinforcement learning
    • Discovering hidden structures with unsupervised learning
      • Finding subgroups with clustering
      • Dimensionality reduction for data compression
      • An introduction to the basic terminology and notations
  • A roadmap for building machine learning systems
    • Preprocessing - getting data into shape
    • Training and selecting a predictive model
    • Evaluating models and predicting unseen data instances
  • Using Python for machine learning
  • Installing Python packages
  • Summary


from IPython.display import Image

Building intelligent machines to transform data into knowledge

构建智能机器,来将数据转换为知识

The three different types of machine learning

三种不同类型的机器学习

Image(filename='./images/01_01.png', width=500) 

python机器学习ch01_第2张图片



Making predictions about the future with supervised learning

通过监督学习来预测未来

Image(filename='./images/01_02.png', width=500)  

python机器学习ch01_第3张图片

# 设置一个单元格进行多个输出
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'

Classification for predicting class labels

预测类标签的所属类别

Image(filename='./images/01_03.png', width=300) 

python机器学习ch01_第4张图片



Regression for predicting continuous outcomes

预测输出结果连续的回归

Image(filename='./images/01_04.png', width=300) 

python机器学习ch01_第5张图片



Solving interactive problems with reinforcement learning

使用强化学习解决交互问题

Image(filename='./images/01_05.png', width=300)  # Agent技术是一种处于一定环境下包装的计算机系统,为实现设计目的,能在该环境下灵活的,自主的活动。

python机器学习ch01_第6张图片



Discovering hidden structures with unsupervised learning

通过无监督学习来发现隐藏的结构

Finding subgroups with clustering

通过聚类来发现子簇/群

Image(filename='./images/01_06.png', width=300) 

python机器学习ch01_第7张图片



Dimensionality reduction for data compression

通过数据压缩实现降维

Image(filename='./images/01_07.png', width=500) 



An introduction to the basic terminology and notations

介绍基本的术语和符号

Image(filename='./images/01_08.png', width=500) 



A roadmap for building machine learning systems

构建机器学习系统的路线图

Image(filename='./images/01_09.png', width=700) 



Preprocessing - getting data into shape

预处理–使得数据成型

Training and selecting a predictive model

选择和训练一个预测模型

Evaluating models and predicting unseen data instances

评估模型,使用未知数据来进行预测

Using Python for machine learning

使用python来进行机器学习

Installing Python packages

安装python的(第三方)包

Summary

摘要

你可能感兴趣的:(数据分析&挖掘,python,机器学习,人工智能)