/******************************************************************************************
Copyright (c) Bit Software, Inc.(2016), All rights reserved.
Purpose: 实现二叉树的基本操作
Author: MaJing
Reviser: yyy
Created Time: 2016-9-5
******************************************************************************************/
#pragma once
#include
#include
// 一般二叉树实现接口实现
template
struct BinaryTreeNode
{
T _data; // 数据
BinaryTreeNode* _left; // 左孩子
BinaryTreeNode* _right; // 右孩子
BinaryTreeNode(const T& x)
:_data(x)
,_left(NULL)
,_right(NULL)
{}
};
template
class BinaryTree
{
public:
BinaryTree()
:_root(NULL)
{}
BinaryTree(T array[], size_t size)
{
// 1.创建二叉树
int index = 0;
_CreateTree(_root, array, size, index);
}
//
// 实现深拷贝二叉树
//
BinaryTree(const BinaryTree& t)
{
this->_root = _CopyTree(t._root);
}
/*BinaryTree& operator=(const BinaryTree& t)
{
if (this != &t)
{
this->Destory();
this->_root = _CopyTree(t._root);
}
return *this;
}*/
BinaryTree& operator=(BinaryTree t)
{
swap(_root, t._root);
return *this;
}
~BinaryTree()
{
Destory();
}
// 2.遍历二叉树(前序、中序、后序、层序)
void PrevOrder()
{
cout<<"PrevOrder:";
_PrevOrder(_root);
cout<*> q;
q.push(_root);
// 队列为空时遍历完成
while (!q.empty())
{
BinaryTreeNode* root = q.front();
if (root->_left)
{
q.push(root->_left);
}
if (root->_right)
{
q.push(root->_right);
}
cout<_data<<" ";
q.pop();
}
cout<*> s;
if (_root)
{
s.push(_root);
}
while (!s.empty())
{
//
// 先访问根节点,先入右节点再入左节点,
// 出栈时才能先访问到左节点,再访问到右节点。
//
BinaryTreeNode* root = s.top();
cout<_data<<" ";
s.pop();
if (root->_right)
{
s.push(root->_right);
}
if (root->_left)
{
s.push(root->_left);
}
}
cout<*> s;
BinaryTreeNode* cur = _root;
while (cur || !s.empty())
{
// 1.先将左节点全部入栈
while (cur)
{
s.push(cur);
cur = cur->_left;
}
//
// 2.栈不为空时,访问栈顶节点。
// 将cur指向栈顶节点的右子树,继续中序遍历右子树。
//
if (!s.empty())
{
BinaryTreeNode* top = s.top();
cout<_data<<" ";
s.pop();
cur = top->_right;
}
}
cout<*> s;
BinaryTreeNode* cur = _root;
BinaryTreeNode* prevVisited = NULL;
while (cur || !s.empty())
{
// 入栈做孩子节点
while (cur)
{
s.push(cur);
cur = cur->_left;
}
// 2.右节点为空/之前右节点已经访问过了的时候访问当前的栈顶节点
BinaryTreeNode* top = s.top();
if (top->_right == NULL || prevVisited == top->_right)
{
cout<_data<<" ";
s.pop();
prevVisited = top;
}
else
{
cur = top->_right;
}
}
cout<* Find(const T& x)
{
return _Find(_root, x);
}
int Height()
{
return _Height(_root);
}
int Size()
{
return _Size(_root);
}
void Destory()
{
_Destory(_root);
_root = NULL;
}
protected:
// 构建二叉树
void _CreateTree(BinaryTreeNode*& root, T array[], size_t size, int& index)
{
if (index < size && array[index] != '#')
{
root = new BinaryTreeNode(array[index]);
_CreateTree(root->_left, array, size, ++index);
_CreateTree(root->_right, array, size, ++index);
}
}
void _PrevOrder(BinaryTreeNode* root)
{
if (root == NULL)
return;
cout<_data<<" ";
_PrevOrder(root->_left);
_PrevOrder(root->_right);
}
void _InOrder(BinaryTreeNode* root)
{
if (root == NULL)
return;
_InOrder(root->_left);
cout<_data<<" ";
_InOrder(root->_right);
}
void _PostOrder(BinaryTreeNode* root)
{
if (root == NULL)
return;
_PostOrder(root->_left);
_PostOrder(root->_right);
cout<_data<<" ";
}
BinaryTreeNode* _Find(BinaryTreeNode* root, const T& x)
{
if (root == NULL)
return NULL;
if (root->_data == x)
return root;
BinaryTreeNode* ret = NULL;
if (ret = _Find(root->_left, x))
{
return ret;
}
if (ret = _Find(root->_right, x))
{
return ret;
}
return NULL;
}
int _Height(BinaryTreeNode* root)
{
if (root == NULL)
{
return 0;
}
int leftHeight = _Height(root->_left) + 1;
int rightHeight = _Height(root->_right) + 1;
return leftHeight > rightHeight ? leftHeight : rightHeight;
}
int _Size(BinaryTreeNode* root)
{
if (root == NULL)
{
return 0;
}
return _Size(root->_left) + _Size(root->_right) + 1;
}
// 拷贝二叉树
BinaryTreeNode* _CopyTree(BinaryTreeNode* root)
{
BinaryTreeNode* newRoot = NULL;
if (root)
{
newRoot = new BinaryTreeNode(root->_data);
newRoot->_left = _CopyTree(root->_left);
newRoot->_right = _CopyTree(root->_right);
}
return newRoot;
}
void _Destory(BinaryTreeNode* root)
{
if (root == NULL)
return;
_Destory(root->_left);
_Destory(root->_right);
delete root;
}
private:
BinaryTreeNode* _root; // 根节点
};
// 测试二叉树
void TestBinaryTree()
{
cout<<"TestBinaryTree:"< tree(array, 10);
tree.PrevOrder();
tree.PrevOrder_NonR();
tree.InOrder();
tree.InOrder_NonR();
tree.PostOrder();
tree.PostOrder_NonR();
tree.LevelOrder();
BinaryTreeNode* ret = tree.Find(3);
cout<<"Find 3?: "<_data< treeCopy1 = tree;
treeCopy1.PrevOrder();
BinaryTree treeCopy2;
treeCopy2 = tree;
treeCopy2.PrevOrder();
}
// 二叉树三叉链结构
template
struct BinaryTreeNode_P
{
T _data; // 数据
BinaryTreeNode_P* _left; // 左孩子
BinaryTreeNode_P* _right; // 右孩子
BinaryTreeNode_P* _parent; // 父节点
BinaryTreeNode_P(const T& x)
:_data(x)
,_left(NULL)
,_right(NULL)
,_parent(NULL)
{}
};
template
class BinaryTree_P
{
public:
BinaryTree_P(T array[], size_t size)
{
int index = 0;
_CreateTree(_root, array, size, index);
}
protected:
// 构建二叉树
void _CreateTree(BinaryTreeNode_P*& root, T array[], size_t size, int& index)
{
if (index < size && array[index] != '#')
{
root = new BinaryTreeNode_P(array[index]);
_CreateTree(root->_left, array, size, ++index);
// 更新父节点
if (root->_left)
root->_left->_parent = root;
_CreateTree(root->_right, array, size, ++index);
// 更新父节点
if (root->_right)
root->_right->_parent = root;
}
}
private:
BinaryTreeNode_P* _root;
};
// 测试二叉树
void TestBinaryTree_P()
{
int array[20] = {1, 2, 3, '#', '#', 4, '#', '#', 5, 6};
BinaryTree_P tree(array, 10);
}