Java虚拟机是一台执行Java字节码的虚拟计算机,它拥有独立的运行机制,其运行的Java字节码也未必由Java语言编译而成。JVM平台的各种语言可以共享Java虚拟机带来的跨平台性、优秀的垃圾回器,以及可靠的即时编译器。Java技术的核心就是Java虚拟机(JVM,Java Virtual Machine),因为所有的Java程序都运行在Java虚拟机内部。Java虚拟机就是二进制字节码的运行环境,负责装载字节码到其内部,解释/编译为对应平台上的机器指令执行。每一条Java指令,Java虚拟机规范中都有详细定义,如怎么取操作数,怎么处理操作数,处理结果放在哪里。
特点:
JVM是运行在操作系统之上的,它与硬件没有直接的交互
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4YEbGVU5-1595335785774)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594799309902.png)]
执行引擎包含三部分:解释器,及时编译器,垃圾回收器
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RDVWXAeI-1595335785777)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594725450328.png)]
Java编译器输入的指令流基本上是一种基于栈的指令集架构,另外一种指令集架构则是基于寄存器的指令集架构。具体来说:这两种架构之间的区别:
基于栈式架构的特点
基于寄存器架构的特点
举例
同样执行2+3这种逻辑操作,其指令分别如下:
基于栈的计算流程(以Java虚拟机为例):
iconst_2 //常量2入栈
istore_1
iconst_3 // 常量3入栈
istore_2
iload_1
iload_2
iadd //常量2/3出栈,执行相加
istore_0 // 结果5入栈
而基于寄存器的计算流程
mov eax,2 //将eax寄存器的值设为1
add eax,3 //使eax寄存器的值加3
由于跨平台性的设计,Java的指令都是根据栈来设计的。不同平台CPU架构不同,所以不能设计为基于寄存器的。优点是跨平台,指令集小,编译器容易实现,缺点是性能下降,实现同样的功能需要更多的指令。
时至今日,尽管嵌入式平台已经不是Java程序的主流运行平台了(准确来说应该是HotSpotVM的宿主环境已经不局限于嵌入式平台了),那么为什么不将架构更换为基于寄存器的架构呢?
Java虚拟机的启动是通过引导类加载器(bootstrap class loader)创建一个初始类(initial class)来完成的,这个类是由虚拟机的具体实现指定的。
有如下的几种情况:
类加载器子系统负责从文件系统或者网络中加载Class文件,class文件在文件开头有特定的文件标识。
ClassLoader只负责class文件的加载,至于它是否可以运行,则由Execution Engine决定。
加载的类信息存放于一块称为方法区的内存空间。除了类的信息外,方法区中还会存放运行时常量池信息,可能还包括字符串字面量和数字常量(这部分常量信息是Class文件中常量池部分的内存映射)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Q4Llqllb-1595335785781)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594784989537.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iYWzJG7c-1595335785784)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594779207170.png)]
Java虚拟机对class文件采用的是按需加载的方式,也就是说当需要使用该类时才会将它的class文件加载到内存生成class对象。而且加载某个类的class文件时,Java虚拟机采用的是双亲委派模式,即把请求交由父类处理,它是一种任务委派模式。
如果一个类加载器收到了类加载请求,它并不会自己先去加载,而是把这个请求委托给父类的加载器去执行;
如果父类加载器还存在其父类加载器,则进一步向上委托,依次递归,请求最终将到达顶层的启动类加载器;
如果父类加载器可以完成类加载任务,就成功返回,倘若父类加载器无法完成此加载任务,子加载器才会尝试自己去加载,这就是双亲委派模式。
将常量池内的符号引用转换为直接引用的过程。
事实上,解析操作往往会伴随着JVM在执行完初始化之后再执行。
符号引用就是一组符号来描述所引用的目标。符号引用的字面量形式明确定义在《java虚拟机规范》的Class文件格式中。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。
解析动作主要针对类或接口、字段、类方法、接口方法、方法类型等。对应常量池中的CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info等。
打破双亲委派机制则不仅要继承ClassLoader类,还要重写loadClass和findClass方法。
JVM支持两种类型的类加载器,分别是:
JVM中的程序计数寄存器(Program Counter Register)中,Register的命名源于CPU的寄存器,寄存器存储指令相关的现场信息。CPU只有把数据装载到寄存器才能够运行。这里,并非是广义上所指的物理寄存器,或许将其翻译为PC计数器(或指令计数器)会更加贴切(也称为程序钩子),并且也不容易引起一些不必要的误会。JVM中的PC寄存器是对物理PC寄存器的一种抽象模拟。
它是一块很小的内存空间,几乎可以忽略不记。也是运行速度最快的存储区域。
在JVM规范中,每个线程都有它自己的程序计数器,是线程私有的,生命周期与线程的生命周期保持一致。
任何时间一个线程都只有一个方法在执行,也就是所谓的当前方法。程序计数器会存储当前线程正在执行的Java方法的JVM指令地址;或者,如果是在执行native方法,则是未指定值(undefned)。
它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令。
它是唯一一个在Java虚拟机规范中没有规定任何outotMemoryError情况的区域。
PC寄存器用来存储指向下一条指令的地址,也即将要执行的指令代码。由执行引擎读取下一条指令。
因为CPU需要不停的切换各个线程,这时候切换回来以后,就得知道接着从哪开始继续执行。
JVM的字节码解释器就需要通过改变PC寄存器的值来明确下一条应该执行什么样的字节码指令。
我们都知道所谓的多线程在一个特定的时间段内只会执行其中某一个线程的方法,CPU会不停地做任务切换,这样必然导致经常中断或恢复,如何保证分毫无差呢?为了能够准确地记录各个线程正在执行的当前字节码指令地址,最好的办法自然是为每一个线程都分配一个PC寄存器,这样一来各个线程之间便可以进行独立计算,从而不会出现相互干扰的情况。
由于CPU时间片轮限制,众多线程在并发执行过程中,任何一个确定的时刻,一个处理器或者多核处理器中的一个内核,只会执行某个线程中的一条指令。
这样必然导致经常中断或恢复,如何保证分毫无差呢?每个线程在创建后,都会产生自己的程序计数器和栈帧,程序计数器在各个线程之间互不影响。
首先栈是运行时的单位,而堆是存储的单位
Java虚拟机栈(Java Virtual Machine Stack),早期也叫Java栈。每个线程在创建时都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应着一次次的Java方法调用。
主管Java程序的运行,它保存方法的局部变量、部分结果,并参与方法的调用和返回。
栈是一种快速有效的分配存储方式,访问速度仅次于程序计数器。JVM直接对Java栈的操作只有两个:
对于栈来说不存在垃圾回收问题(栈存在溢出的情况)
栈中可能出现的异常
Java 虚拟机规范允许Java栈的大小是动态的或者是固定不变的。
如果采用固定大小的Java虚拟机栈,那每一个线程的Java虚拟机栈容量可以在线程创建的时候独立选定。如果线程请求分配的栈容量超过Java虚拟机栈允许的最大容量,Java虚拟机将会抛出一个StackoverflowError 异常。
如果Java虚拟机栈可以动态扩展,并且在尝试扩展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的虚拟机栈,那Java虚拟机将会抛出一个 outofMemoryError 异常。
每个栈帧中存储着:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CjLgvC5j-1595335785801)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594862070667.png)]
并行每个线程下的栈都是私有的,因此每个线程都有自己各自的栈,并且每个栈里面都有很多栈帧,栈帧的大小主要由局部变量表 和 操作数栈决定的
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZkGEbeup-1595335785802)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594862136303.png)]
定义为一个数字数组,主要用于存储方法参数和定义在方法体内的局部变量这些数据类型包括各类基本数据类型、对象引用(reference),以及returnAddress类型。
操作数栈:Operand Stack
每一个独立的栈帧除了包含局部变量表以外,还包含一个后进先出(Last - In - First -Out)的 操作数栈,也可以称之为 表达式栈(Expression Stack)
操作数栈,在方法执行过程中,根据字节码指令,往栈中写入数据或提取数据,即入栈(push)和 出栈(pop)
执行流程如下所示:
首先执行第一条语句,PC寄存器指向的是0,也就是指令地址为0,然后使用bipush让操作数15入栈。
执行完后,让PC + 1,指向下一行代码,下一行代码就是将操作数栈的元素存储到局部变量表1的位置,我们可以看到局部变量表的已经增加了一个元素
为什么局部变量表不是从0开始的呢?
其实局部变量表也是从0开始的,但是因为0号位置存储的是this指针,所以说就直接省略了~
然后PC+1,指向的是下一行。让操作数8也入栈,同时执行store操作,存入局部变量表中
然后从局部变量表中,依次将数据放在操作数栈中
然后将操作数栈中的两个元素执行相加操作,并存储在局部变量表3的位置
每一个栈帧内部都包含一个指向运行时常量池中该栈帧所属方法的引用包含这个引用的目的就是为了支持当前方法的代码能够实现动态链接(Dynamic Linking)。比如:invokedynamic指令
在Java源文件被编译到字节码文件中时,所有的变量和方法引用都作为符号引用(symbolic Reference)保存在class文件的常量池里。
比如:描述一个方法调用了另外的其他方法时,就是通过常量池中指向方法的符号引用来表示的,那么动态链接的作用就是为了将这些符号引用转换为调用方法的直接引用。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FNY4NpAl-1595335785824)(C:\Users\王文\AppData\Roaming\Typora\typora-user-images\1594881155401.png)]
简单地讲,一个Native Methodt是一个Java调用非Java代码的接囗。一个Native Method是这样一个Java方法:该方法的实现由非Java语言实现,比如C。这个特征并非Java所特有,很多其它的编程语言都有这一机制,比如在C++中,你可以用extern “c” 告知c++编译器去调用一个c的函数。
“A native method is a Java method whose implementation is provided by non-java code.”(本地方法是一个非Java的方法,它的具体实现是非Java代码的实现)
在定义一个native method时,并不提供实现体(有些像定义一个Java interface),因为其实现体是由非java语言在外面实现的。
本地接口的作用是融合不同的编程语言为Java所用,它的初衷是融合C/C++程序。
Java虚拟机栈于管理Java方法的调用,而本地方法栈用于管理本地方法的调用。
本地方法栈,也是线程私有的。
允许被实现成固定或者是可动态扩展的内存大小。(在内存溢出方面是相同的)
本地方法是使用C语言实现的。
它的具体做法是Native Method Stack中登记native方法,在Execution Engine 执行时加载本地方法库。
一个JVM实例只存在一个堆内存,堆也是Java内存管理的核心区域。
Java堆区在JVM启动的时候即被创建,其空间大小也就确定了。是JVM管理的最大一块内存空间。
Java虚拟机规范》中对Java堆的描述是:所有的对象实例以及数组都应当在运行时分配在堆上。(The heap is the run-time data area from which memory for all class instances and arrays is allocated)
Java 7及之前堆内存逻辑上分为三部分:新生区+养老区+永久区
Java 8及之后堆内存逻辑上分为三部分:新生区养老区+元空间
Young Generation Space新生区 Young/New 又被划分为Eden区和Survivor区
Tenure generation space 养老区 Old/Tenure
Meta Space 元空间 Meta
Java堆区用于存储Java对象实例,那么堆的大小在JVM启动时就已经设定好了,大家可以通过选项"-Xmx"和"-Xms"来进行设置。
一旦堆区中的内存大小超过“-xmx"所指定的最大内存时,将会抛出outofMemoryError异常。
通常会将-Xms和-Xmx两个参数配置相同的值,其目的是为了能够在ava垃圾回收机制清理完堆区后不需要重新分隔计算堆区的大小,从而提高性能。-
jps -> staat -gc 进程id
存储在JVM中的Java对象可以被划分为两类:
Java堆区进一步细分的话,可以划分为年轻代(YoungGen)和老年代(oldGen)
其中年轻代又可以划分为Eden空间、Survivor0空间和Survivor1空间(有时也叫做from区、to区)
我们创建的对象,一般都是存放在Eden区的,当我们Eden区满了后,就会触发GC操作,一般被称为 YGC / Minor GC操作
当我们进行一次垃圾收集后,红色的将会被回收,而绿色的还会被占用着,存放在S0(Survivor From)区。同时我们给每个对象设置了一个年龄计数器,一次回收后就是1。
同时Eden区继续存放对象,当Eden区再次存满的时候,又会触发一个MinorGC操作,此时GC将会把 Eden和Survivor From中的对象 进行一次收集,把存活的对象放到 Survivor To区,同时让年龄 + 1
我们继续不断的进行对象生成 和 垃圾回收,当Survivor中的对象的年龄达到15的时候,将会触发一次 Promotion晋升的操作,也就是将年轻代中的对象 晋升到 老年代中
特别注意,在Eden区满了的时候,才会触发MinorGC,而幸存者区满了后,不会触发MinorGC操作
如果Survivor区满了后,将会触发一些特殊的规则,也就是可能直接晋升老年代
我们都知道,JVM的调优的一个环节,也就是垃圾收集,我们需要尽量的避免垃圾回收,因为在垃圾回收的过程中,容易出现STW的问题
而 Major GC 和 Full GC出现STW的时间,是Minor GC的10倍以上
当年轻代空间不足时,就会触发MinorGC,这里的年轻代满指的是Eden代满,Survivor满不会引发GC。(每次Minor GC会清理年轻代的内存。)
因为Java对象大多都具备 朝生夕灭 的特性,所以Minor GC非常频繁,一般回收速度也比较快。这一定义既清晰又易于理解。
Minor GC会引发STW,暂停其它用户的线程,等垃圾回收结束,用户线程才恢复运行
STW:stop the word
指发生在老年代的GC,对象从老年代消失时,我们说 “Major Gc” 或 “Full GC” 发生了
出现了MajorGc,经常会伴随至少一次的Minor GC(但非绝对的,在Paralle1 Scavenge收集器的收集策略里就有直接进行MajorGC的策略选择过程)
Major GC的速度一般会比MinorGc慢1e倍以上,STW的时间更长,如果Major GC后,内存还不足,就报OOM了
触发Fu11GC执行的情况有如下五种:
说明:Full GC 是开发或调优中尽量要避免的。这样暂时时间会短一些
为什么要把Java堆分代?不分代就不能正常工作了吗?经研究,不同对象的生命周期不同。70%-99%的对象是临时对象。
新生代:有Eden、两块大小相同的survivor(又称为from/to,s0/s1)构成,to总为空。 老年代:存放新生代中经历多次GC仍然存活的对象。
其实不分代完全可以,分代的唯一理由就是优化GC性能。如果没有分代,那所有的对象都在一块,就如同把一个学校的人都关在一个教室。GC的时候要找到哪些对象没用,这样就会对堆的所有区域进行扫描。而很多对象都是朝生夕死的,如果分代的话,把新创建的对象放到某一地方,当GC的时候先把这块存储“朝生夕死”对象的区域进行回收,这样就会腾出很大的空间出来。
如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到survivor空间中,并将对象年龄设为1。对象在survivor区中每熬过一次MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁,其实每个JVM、每个GC都有所不同)时,就会被晋升到老年代
对象晋升老年代的年龄阀值,可以通过选项-xx:MaxTenuringThreshold来设置
针对不同年龄段的对象分配原则如下所示:
不一定,因为还有TLAB这个概念,在堆中划分出一块区域,为每个线程所独占
TLAB:Thread Local Allocation Buffer,也就是为每个线程单独分配了一个缓冲区
堆区是线程共享区域,任何线程都可以访问到堆区中的共享数据
由于对象实例的创建在JVM中非常频繁,因此在并发环境下从堆区中划分内存空间是线程不安全的
为避免多个线程操作同一地址,需要使用加锁等机制,进而影响分配速度。
从内存模型而不是垃圾收集的角度,对Eden区域继续进行划分,JVM为每个线程分配了一个私有缓存区域,它包含在Eden空间内。
多线程同时分配内存时,使用TLAB可以避免一系列的非线程安全问题,同时还能够提升内存分配的吞吐量,因此我们可以将这种内存分配方式称之为快速分配策略。
据我所知所有OpenJDK衍生出来的JVM都提供了TLAB的设计。
对象首先是通过TLAB开辟空间,如果不能放入,那么需要通过Eden来进行分配
在《深入理解Java虚拟机》中关于Java堆内存有这样一段描述:
随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。
在Java虚拟机中,对象是在Java堆中分配内存的,这是一个普遍的常识。但是,有一种特殊情况,那就是如果经过逃逸分析(Escape Analysis)后发现,一个对象并没有逃逸出方法的话,那么就可能被优化成栈上分配。这样就无需在堆上分配内存,也无须进行垃圾回收了。这也是最常见的堆外存储技术。
开发中能使用局部变量的,就不要使用在方法外定义。
使用逃逸分析,编译器可以对代码做如下优化:
从线程共享与否的角度来看
ThreadLocal:如何保证多个线程在并发环境下的安全性?典型应用就是数据库连接管理,以及会话管理
下面就涉及了对象的访问定位
《Java虚拟机规范》中明确说明:“尽管所有的方法区在逻辑上是属于堆的一部分,但一些简单的实现可能不会选择去进行垃圾收集或者进行压缩。”但对于HotSpotJVM而言,方法区还有一个别名叫做Non-Heap(非堆),目的就是要和堆分开。
所以,方法区看作是一块独立于Java堆的内存空间。
方法区主要存放的是 Class,而堆中主要存放的是 实例化的对象
《深入理解Java虚拟机》书中对方法区(Method Area)存储内容描述如下:它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等。
运行时常量池(Runtime Constant Pool)是方法区的一部分。
常量池表(Constant Pool Table)是Class文件的一部分,用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
运行时常量池,在加载类和接口到虚拟机后,就会创建对应的运行时常量池。
JVM为每个已加载的类型(类或接口)都维护一个常量池。池中的数据项像数组项一样,是通过索引访问的。
首先明确:只有Hotspot才有永久代。BEA JRockit、IBMJ9等来说,是不存在永久代的概念的。原则上如何实现方法区属于虚拟机实现细节,不受《Java虚拟机规范》管束,并不要求统一
Hotspot中方法区的变化:
JDK1.6及以前 | 有永久代,静态变量存储在永久代上 |
---|---|
JDK1.7 | 有永久代,但已经逐步 “去永久代”,字符串常量池,静态变量移除,保存在堆中 |
JDK1.8 | 无永久代,类型信息,字段,方法,常量保存在本地内存的元空间,但字符串常量池、静态变量仍然在堆中。 |
由于类的元数据分配在本地内存中,元空间的最大可分配空间就是系统可用内存空间,这项改动是很有必要的,原因有:
在某些场景下,如果动态加载类过多,容易产生Perm区的oom。比如某个实际Web工 程中,因为功能点比较多,在运行过程中,要不断动态加载很多类,经常出现致命错误。
“Exception in thread‘dubbo client x.x connector’java.lang.OutOfMemoryError:PermGen space”
而元空间和永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。 因此,默认情况下,元空间的大小仅受本地内存限制。
有些人认为方法区(如HotSpot虚拟机中的元空间或者永久代)是没有垃圾收集行为的,其实不然。《Java虚拟机规范》对方法区的约束是非常宽松的,提到过可以不要求虚拟机在方法区中实现垃圾收集。事实上也确实有未实现或未能完整实现方法区类型卸载的收集器存在(如JDK11时期的ZGC收集器就不支持类卸载)。 一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻。但是这部分区域的回收有时又确实是必要的。以前sun公司的Bug列表中,曾出现过的若干个严重的Bug就是由于低版本的HotSpot虚拟机对此区域未完全回收而导致内存泄漏
方法区的垃圾收集主要回收两部分内容:常量池中废弃的常量和不在使用的类型
从对象创建的方式 和 步骤开始说
对象头包含了两部分,分别是 运行时元数据(Mark Word)和 类型指针
如果是数组,还需要记录数组的长度
执行引擎属于JVM的下层,里面包括 解释器、及时编译器、垃圾回收器
JVM的主要任务是负责装载字节码到其内部,但字节码并不能够直接运行在操作系统之上,因为字节码指令并非等价于本地机器指令,它内部包含的仅仅只是一些能够被JVM所识别的字节码指令、符号表,以及其他辅助信息。
那么,如果想要让一个Java程序运行起来,执行引擎(Execution Engine)的任务就是将字节码指令解释/编译为对应平台上的本地机器指令才可以。简单来说,JVM中的执行引擎充当了将高级语言翻译为机器语言的译者。
当Java虚拟机启动时会根据预定义的规范对字节码采用逐行解释的方式执行,将每条字节码文件中的内容“翻译”为对应平台的本地机器指令执行。
JIT(Just In Time Compiler)编译器:就是虚拟机将源代码直接编译成和本地机器平台相关的机器语言。