- 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》
竹子_23
OpenCV入门opencv人工智能计算机视觉
一、图像梯度处理:理解像素变化的本质1.1图像梯度基础图像梯度是计算机视觉中的核心概念,它描述了图像中像素强度的变化情况:梯度方向:像素值变化最剧烈的方向(垂直于边缘)梯度幅度:像素值变化的强度(值越大表示边缘越明显)物理意义:就像地形图中的等高线,梯度大的地方相当于陡坡,梯度小的地方相当于平地1.2垂直边缘提取垂直边缘是图像中物体左右边界形成的线条:特征:水平方向上像素值发生突变应用场景:文档扫
- 探秘VCSI:一款创新的视觉内容识别工具
探秘VCSI:一款创新的视觉内容识别工具是一个基于深度学习的开源项目,其主要目标是帮助开发者和数据科学家进行高效、精确的视觉内容识别。在这个数字时代,我们每天都被大量的图像和视频所包围,VCSI提供了强大的工具,使得机器能够理解这些媒体内容,从而打开了一扇全新的应用之门。技术解析VCSI基于现代神经网络架构,特别是卷积神经网络(CNNs),用于图像特征提取。它利用预训练模型,如VGG16和ResN
- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- Python爬虫与图像识别:搜索引擎的多模态搜索
搜索引擎技术
搜索引擎实战python爬虫搜索引擎ai
Python爬虫与图像识别:搜索引擎的多模态搜索关键词:Python爬虫、图像识别、多模态搜索、搜索引擎、计算机视觉、深度学习、数据采集摘要:本文深入探讨了如何结合Python爬虫技术与图像识别算法构建多模态搜索引擎。我们将从基础概念出发,详细讲解爬虫系统设计、图像特征提取、多模态索引构建等核心技术,并通过实际案例展示如何实现一个能够同时处理文本和图像查询的搜索引擎系统。文章还将分析当前技术挑战和
- 计算机视觉与深度学习 | 基于MATLAB的图像特征提取与匹配算法总结
单北斗SLAMer
程序语言设计(C语言C++MatlabPython等)图像处理matlab计算机视觉人工智能
基于MATLAB的图像特征提取与匹配算法全面指南图像特征提取与匹配基于MATLAB的图像特征提取与匹配算法全面指南一、图像特征提取基础特征类型分类二、点特征提取算法1.Harris角点检测2.SIFT(尺度不变特征变换)3.SURF(加速鲁棒特征)4.FAST角点检测5.ORB(OrientedFASTandRotatedBRIEF)三、区域特征提取算法1.MSER(最大稳定极值区域)2.Blob
- 目标检测的图像特征提取
勇往直前的流浪刀客
CV图像特征提取
目标检测的图像特征提取之(一)HOG特征1、HOG特征:方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究
- MATLAB算法实战应用案例精讲-【图像处理】图像特征提取(附MATLAB代码实现)
林聪木
图像处理计算机视觉人工智能
目录前言知识储备提取图像文本的Python库1.pytesseract2.EasyOCR3.Keras-OCR4.TrOCR5.docTR算法原理图像的特征图像特征的分类遥感图像分类特征提取(Featureextraction)灰度共生矩阵GLCM兴趣点提取BRIEF算法Harris角点算法Harris和Shi-Tomas算法SIFT/SURF算法SIFT原理SURF原理LBP和HOG特征算子LB
- 青少年编程与数学 02-016 Python数据结构与算法 28课题、图像处理算法
明月看潮生
编程与数学第02阶段青少年编程python图像处理编程与数学算法
青少年编程与数学02-016Python数据结构与算法28课题、图像处理算法一、图像增强与复原1.直方图均衡化2.对比度受限的自适应直方图均衡化(CLAHE)二、图像滤波与边缘检测1.高斯滤波2.Canny边缘检测三、图像分割与形态学操作1.形态学操作四、图像特征提取与几何变换1.SIFT特征提取2.仿射变换与透视变换五、图像压缩JPEG压缩课题摘要:本文是对一些常见图像处理算法的详解,包括原理、
- 基于.NET后端实现图片搜索图片库 核心是计算上传图片与库中图片的特征向量相似度并排序展示结果
云草桑
C#.net.netmicrosoft图像处理C#
基于.NET后端实现图片搜索图片库的方案,核心是计算上传图片与库中图片的特征向量相似度并排序展示结果。整体思路图像特征提取:使用深度学习模型(如ResNet)提取图片的特征向量。特征向量存储:将图片的特征向量存储在数据库中。相似度计算:使用余弦相似度算法计算上传图片与库中图片的特征向量相似度。结果排序与展示:按相似度从高到低排序,并将相似图像展示给用户。实现步骤1.项目搭建创建一个新的.NETWe
- 《深度学习》课程之卷积神经网络原理与实践教学设计方案
人工智能教学实践
人工智能DeepSeek
《深度学习》课程之卷积神经网络原理与实践教学设计方案一、教学目标设计(一)知识目标学生能够准确描述卷积神经网络(CNN)的基本定义,包括其核心组成部分(如卷积层、池化层、全连接层等)及其在图像识别任务中的作用。理解卷积神经网络的基本工作原理,掌握卷积运算、池化操作的数学定义和物理意义,以及它们对图像特征提取的影响。了解LeNet-5模型的网络结构,包括各层的参数设置、输入输出维度等。(二)技能目标
- 机器学习笔记 图像特征提取器(卷积变体)的技术发展与演变
坐望云起
深度学习从入门到精通机器学习笔记人工智能
一、图像特征提取器简述图像特征提取器是可用于从图像中学习表示的函数或模块。最常见的特征提取器类型是卷积,其中内核在图像上滑动,允许参数共享和平移不变性。在深度学习技术的快速发展过程中,基于卷积也演变出来了若干新技术由于图像特征的提取,这里进行了一下简单梳理,一是加强了解,二是备忘。下面的清单每项都只是一个概念,因为每个概念都产生了若干论文。1、卷积卷积是一种矩阵运算,由一个内核组成,一个小的权重矩
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- 自动驾驶之BEVDet
maxruan
BEV自动驾驶自动驾驶人工智能机器学习
BEVDet主要分为4个模块:1、图像视图编码器(Image-viewEncoder):就是一个图像特征提取的网络,由主干网络backbone+颈部网络neck构成。经典主干网络比如resnet,SwinTransformer等。neck有==FPN==,PAFPN等。例如输入环视图像,记作Tensor([bs,N,3,H,W]),提取多尺度特征;其中bs=batchsize,N=环视图像的个数,
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合SimAM和SKAttention形成全新的SKAM注意力机制和C2f_SKAM(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO机器学习深度学习人工智能计算机视觉目标检测pytorch
1.SKAM介绍SKAM(SimAMandSKAttentionModule)注意力机制结合了SimAM和SKAttention的优点,能够在图像特征提取中表现出更为优异的性能。SimAM注意力机制SimAM(SimplifiedAttentionModule)是一种简单但有效的注意力机制,旨在增强重要特征,同时抑制不相关的特征。SimAM的主要优点包括:(1).计算简单:SimAM仅需计算均值和
- python 图像特征提取_python实现LBP方法提取图像纹理特征实现分类的步骤
weixin_39969060
python图像特征提取
题目描述这篇博文是数字图像处理的大作业.题目描述:给定40张不同风格的纹理图片,大小为512*512,要求将每张图片分为大小相同的9块,利用其中的5块作为训练集,剩余的4块作为测试集,构建适当的模型实现图片的分类.图片如下图所示:分析:由于数据集太小,所以神经网络模型并不适合此类的图像处理.就需要寻找方法提取图像的纹理信息.本文采用LBP的方法提取图像的纹理信息,然后转化成直方图作为图像的特征,然
- 图像检索简介
handsomestWei
AI图像处理人工智能
图像检索主要分为两类,一类是基于文本的图像检索(TextBasedImageRetrieval),另一类是基于内容的图像检索(ContentBasedImageRetrieval)基于文本通过对图像进行文本描述(对内容分析进行自动标注和人工标注),提炼关键词等标签信息。后续在进行检索时,可以通过检索关键词的方式查找对应的图片。基于内容以图搜图。涉及图像特征提取、相似度计算、特征数据库存储和搜索。图
- Python OpenCV图像处理:从基础到高级的全方位指南
极客代码
玩转Python开发语言pythonopencv图像处理计算机视觉
目录第一部分:PythonOpenCV图像处理基础1.1OpenCV简介1.2PythonOpenCV安装1.3实战案例:图像显示与保存1.4注意事项第二部分:PythonOpenCV图像处理高级技巧2.1图像变换2.2图像增强2.3图像复原第三部分:PythonOpenCV图像处理实战项目3.1图像滤波3.2图像分割3.3图像特征提取第四部分:PythonOpenCV图像处理注意事项与优化策略4
- 图像预处理之图像去重
江小皮不皮
计算机视觉opencv人工智能图像去重直方图
图像预处理之图像去重图像去重介绍方法基于直方图进行图像比对基于哈希法基于ORG进行图像特征提取基于机器学习批量去重图像去重介绍图像去重通常指的是完全相同的图像,即内容完全相同,颜色、尺寸、方向等都相同。但是在实际应用中,也有相似图像去重的需求,即内容大致相同,颜色、尺寸、方向等可能有所不同。因此,图像去重指的可以是完全一样的图像,也可以是相似的图像。图像去重的方法有以下几种:方法哈希法:通过计算图
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10结合全新多尺度动态增强注意力机制DSAttention(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测神经网络
1.DSAttention介绍DSAttention注意力机制在图像特征提取中具有以下优点:(1).全局信息捕捉能力:DSAttention机制通过使用软注意力机制(SoftmaxAttention)来计算特征图的全局相关性。这种方式能够更好地捕捉图像中的全局信息,有助于增强对复杂场景或大尺度物体的识别能力。(2).多尺度信息融合:该机制引入了多尺度卷积操作,包括不同大小的卷积核(如5x5、1x7
- 图像处理 -- 角点的概念与作用
sz66cm
图像处理人工智能
在图像处理领域,角点(Corner)是图像中一个重要的特征点。角点是指图像中具有局部最大曲率或梯度变化明显的位置,通常出现在两条或多条边缘的交汇处。例如,图像中的建筑物拐角、棋盘格的角等位置都可能被检测为角点。角点的作用特征提取:角点作为图像中的关键点,能够稳定地反映图像的局部结构,因此在图像特征提取中经常使用。角点具有较强的独特性,即使图像发生了旋转、缩放或轻微的光照变化,角点的位置也往往不会发
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 第十四篇【传奇开心果系列】Python的OpenCV库技术点案例示例:图像特征提取与描述
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv人工智能计算机视觉
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、OpenCV图像特征提取与描述介绍二、OpenCV图像特征提取与描述初步示例代码三、扩展思路介绍四、特征点筛选和匹配优化示例代码五、多尺度特征提取示例代码六、非局部特征描述子示例代码七、基于深度学习的特征提取示例代码八、自定义特征提取示例代码九、归纳总结系列短博文目录Python的OpenCV库技术点
- Hugging face
hzhj
深度学习
Huggingface是一个很好的开源社区,包含nlp,cv中最新、最先进的模型和数据集等。常见的功能如下:transformer结构图像特征提取参考文献:HuggingFace–TheAIcommunitybuildingthefuture.
- 2024数学建模美赛B题参考思路+代码+论文
2024数学建模
数学建模2024代码美赛论文B题
2024年思路持续更新中,所有题目,会第一时间发布到专栏内!!!摘要:在气象观测、高速公路行驶、航班制定等场景中能见度一直都是不可或缺的指标之一。影响能见度的主要因素之一是雾。在此背景下,本文主要研究了在大雾情况下能见度主要影响因素和诸多估计方法,对给定数据进行了细致处理,并综合运用主成分分析、多元回归分析、预训练模型图像特征提取、随机森林深度学习算法、LSTM神经网络、摄像机标定算法等统计与算法
- opencv0014 索贝尔(sobel)算子
yf743909
opencv人工智能算法计算机视觉均值算法pythonopencv
前面学习的滤波器主要是用来模糊图像,今天一起来了解关于边缘识别的滤波吧!嘿嘿边缘边缘是像素值发生跃迁的位置,是图像的显著特征之一,在图像特征提取,对象检测,模式识别等方面都有重要的作用。人眼如何识别图像边缘?比如有一幅图,图里面有一条线,左很亮,右边很暗,那人眼就很容易识别这条线作为边缘也就是图像的灰度值快速变化的地方.soble算子sobel算子对图像求一阶导数。一阶导数越大,说明像素在该方向的
- 【知识---图像特征提取算法--颜色直方图(Color Histogram)原理、特点、应用场合及代码】
fyc300
算法计算机视觉人工智能python深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言1.颜色直方图(ColorHistogram)原理2.颜色直方图的特点3.颜色直方图的应用场合4.代码总结前言图像特征提取是计算机视觉领域中的一个重要任务,它有助于将图像转换为可用于分析和识别的数值表示。颜色直方图(ColorHistogram)是一种常见的图像特征提取算法,其具体的细节如下:提示:以下是本篇文章正文内容,
- 【知识---图像特征提取算法--方向梯度直方图(Histogram of Oriented Gradients, HOG)原理、特点、应用场合及代码】
fyc300
算法计算机视觉人工智能linuxpython图像处理
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言方向梯度直方图(HistogramofOrientedGradients,HOG)原理:方向梯度直方图的特点:方向梯度直方图的不足:方向梯度直方图的应用场合:方向梯度直方图的代码示例:总结前言图像特征提取是计算机视觉领域中的一个重要任务,它有助于将图像转换为可用于分析和识别的数值表示。方向梯度直方图(Histogramof
- 【知识---图像特征提取算法--尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)原理、特点、应用场合及代码】
fyc300
算法计算机视觉图像处理人工智能ubuntu
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、尺度不变特征变换(Scale-InvariantFeatureTransform,SIFT)原理:二、尺度不变特征变换的特点:三、尺度不变特征变换的不足:四、尺度不变特征变换的应用场合:五、尺度不变特征变换的代码示例:总结前言图像特征提取是计算机视觉领域中的一个重要任务,它有助于将图像转换为可用于分析和识别的数值表示。
- 【知识---图像特征提取算法--灰度共生矩阵(Gray Level Co-occurrence Matrix, GLCM)原理、特点、应用场合及代码】
fyc300
算法矩阵人工智能python目标检测深度学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、灰度共生矩阵(GrayLevelCo-occurrenceMatrix,GLCM)原理二、灰度共生矩阵的特点三、灰度共生矩阵的应用场合灰度共生矩阵(GrayLevelCo-occurrenceMatrix,GLCM)不足之处五、代码总结前言图像特征提取是计算机视觉领域中的一个重要任务,它有助于将图像转换为可用于分析和识
- 图像识别算法
DSZS123
图像识别图像识别
图像特征包括颜色特征、纹理特征、形状特征以及局部特征点等。局部特点具有很好的稳定性,不容易受外界环境的干扰。1.局部特征点图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系。局部特征点是图像特征的局部表达,它只能反正图像上具有的局部特殊性,所以
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo