- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- 深度学习篇---OC-SORT实际应用效果
Ronin-Lotus
深度学习篇上位机知识篇深度学习pythonOC-SROT
OC-SORT算法在实际应用中的效果可从准确性、鲁棒性、效率三个核心维度评估,其表现与传统多目标跟踪算法(如SORT、DeepSORT)相比有显著提升,尤其在复杂场景中优势突出。以下是具体分析:一、准确性:目标关联更可靠1.遮挡场景下的ID保持能力优势表现:传统算法(如SORT)依赖卡尔曼滤波预测目标位置,当目标长时间遮挡时,预测误差会累积导致轨迹丢失或ID切换。OC-SORT通过以观测为中心的恢
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 深入理解与实现GM-PHD滤波算法:C++应用指南
快撑死的鱼
算法杂谈C++(C语言)算法大揭秘算法c++开发语言
前言多目标跟踪(Multi-TargetTracking,MTT)是自动驾驶、雷达系统、机器人视觉等领域中的重要技术。高斯混合概率假设密度(GaussianMixtureProbabilityHypothesisDensity,GM-PHD)滤波器作为一种有效的多目标跟踪算法,因其能够在处理杂波和新生目标时表现出色而广受关注。本文将详细介绍GM-PHD滤波算法,并通过C++代码示例展示其实现。希望
- YOLOv5-DeepSort 项目使用教程
怀创宪
YOLOv5-DeepSort项目使用教程项目地址:https://gitcode.com/gh_mirrors/yo/Yolov5-deepsort-inference1.项目介绍1.1项目概述YOLOv5-DeepSort是一个结合了YOLOv5目标检测算法和DeepSort目标跟踪算法的开源项目。该项目旨在通过YOLOv5进行目标检测,并使用DeepSort进行目标跟踪和计数。代码封装成一个
- 基于Python和PyTorch的实现示例,结合YOLOv8进行人体检测、HRNet进行姿态估计,以及LSTM进行时间序列分析。
人工智能专属驿站
计算机视觉
视频输入:从摄像头或视频文件中读取视频流。人体检测与跟踪:使用目标检测模型(如YOLOv8、EfficientDet)检测视频帧中的人体。使用目标跟踪算法(如DeepSORT)跟踪人体,确保连续帧中的人体ID一致。姿态估计:使用姿态估计模型(如HRNet、OpenPose)提取人体的关键点(如头、肩、肘、膝、踝等)。关键点信息用于分析人体的姿态和运动。时间序列分析:使用时间序列模型(如LSTM、G
- 研究下适合部署在jeston上的深度学习类单目标跟踪算法
视觉AI
目标跟踪深度学习目标跟踪算法
单目标跟踪(SOT)算法推荐与分析1.经典Siamese网络跟踪方法1.1SiamFC(NeurIPS2016)**核心思路****优缺点分析**1.2SiamRPN(CVPR2018)**核心思路****优缺点分析**2.Transformer时代的跟踪算法2.1STARK(ICCV2021)**核心思路****优缺点分析**2.2TransT(CVPR2021)**核心思路****优缺点分析*
- 目标检测YOLO实战应用案例100讲-面向无人机图像的小目标检测
林聪木
无人机目标检测人工智能
目录知识储备YOLOv8无人机拍摄视角小目标检测数据集结构环境部署说明安装依赖模型训练权重和指标可视化展示训练YOLOv8PyQt5GUI开发主窗口代码main_window.py使用说明无人机目标跟踪一、目标跟踪的基本原理二、常用的目标跟踪算法基于YOLOv8+图像分割优化关键优化策略(基于VisDrone数据集实验验证)1.模型结构改进2.数据增强策略3.后处理优化4.训练技巧三、性能优化建议
- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- 计算机设计大赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
iuerfee
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
Mr.D学长
pythonjava
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
毕设阿力
计算机视觉目标检测目标跟踪
车辆跟踪及测距该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。该项目使用了YOLOv5目标检测算法和DeepSORT目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!教程博客_传送门链接------->yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)-CSDN博客yolov5deepsort行人/车辆(检测+计数
- [MOT Challenge]官方生成多目标跟踪算法性能评价指标结果,解决test数据集没有gt文件和官网注册问题
Bartender_Jill
目标跟踪人工智能计算机视觉
文章目录⭐⭐⭐内容修正前言一、账号注册1.不要用QQ或163或gmail邮箱2.正常注册流程二、上传测试结果的流程1.使用步骤总结⭐⭐⭐内容修正我先前于2023/4/5日的时候在文章里提到:“提交到官网的文件需要包含测试后的训练集结果和测试后的测试集结果”,该结论经过测试后发现有误。个人于2023/12/8日在评论区的提醒下对MOTChallenge的内容提交进行了重新测试,发现提交到官网的文件并
- 数字信号处理7——点到向量的距离
注释远方
数字信号处理算法
目录一、前言二、点到线段的最短距离——向量法三、点到直线的最短距离——直线法四、点到直线最短距离——向量法一、前言其实在工程应用中很多情况下计算点到直线或者点到线段的距离,比如在unity3d游戏软件设计中计算任意形状路径起点和终点连线距离最远的点,比如用于雷达聚类后在多目标跟踪算法中计算哪个sensor距离track最近,另外还需要知道要计算的点位于直线的哪一侧,这些计算在游戏开发或者数字信号后
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- 基于深度学习的多目标跟踪算法
LittroInno
YOLO目标跟踪人工智能
基于深度学习的多目标跟踪(MOT,Multi-ObjectTracking)算法在近年来取得了显著的进步。这些算法主要利用深度学习模型对视频中的多个目标进行检测和跟踪。在介绍一些常见的深度学习多目标跟踪算法之前,我们首先了解一下其基本概念和挑战:目标检测:首先识别视频帧中的目标(如人、车辆等)。数据关联:将连续帧中的检测结果关联起来,形成目标的轨迹。状态估计:估计目标在视频帧中的位置和其他属性(如
- 竞赛保研 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
iuerfee
python
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 目前目标跟踪算法研究202308
爱吃油淋鸡的莫何
目标跟踪算法人工智能
目标跟踪算法综述——附各算法源码和论文概述TBD(two-shot):SORT、DeepSORT、StrongSORT、ByteTrack、OC-SORTJDE(one-shot):BoT-SORT、0MutiSORT(多目标跟踪策略)0.1track+detection训练一个网络使它最小化类内误差,最大化类间误差。1DeepSORT1.1原理1.1.1SORT(2016)SORT论文:SIMP
- 深度学习目标跟踪简述
LittroInno
深度学习目标跟踪人工智能
深度学习目标跟踪是一个活跃的研究领域,它涉及使用深度学习技术来跟踪视频或实时摄像头中的对象。这个领域通常包括以下几个关键方面:目标检测:在开始跟踪前,首先需要在视频的初始帧中检测到目标。这通常是通过卷积神经网络(CNN)来实现的。特征提取:提取目标的特征,这样算法就能在后续的帧中识别它。这些特征可能包括颜色、形状、纹理等。目标跟踪算法:有多种算法可用于目标跟踪,如Siamese网络、循环神经网络(
- 目标跟踪算法个人理解-SeqTrack篇
update-forever
算法目标跟踪python人工智能计算机视觉
系列文章目录目标跟踪算法个人理解-KeepTrack篇目标跟踪算法个人理解-GRM篇文章目录前言一、SeqTrack简介二、方法1.Overview2.ImageandSequenceRepresentation3.ModelArchitecture4.TrainingandInference三、实验State-of-the-artcomparisonsonfourlarge-scalebench
- 单目标跟踪算法SiamRPN
AAI机器之心
目标跟踪算法人工智能YOLO计算机视觉机器学习深度学习
目标跟踪算法包括单目标跟踪和多目标跟踪,单目标跟踪在每张图片中只跟踪一个目标。目前单目标跟踪的主要方法分为两大类,基于相关滤波(correlationfilter)的跟踪算法,如CSK,KCF,DCF,SRDCF等;基于深度学习的跟踪算法,如SiamFC,SiamRPN,SiamRPN++等。相比之下,相关滤波的速度更快,深度学习的准确性更高。跟踪相关算法如下:这里主要记录下对SIamRPN跟踪算
- 目标跟踪算法中的卡尔曼滤波学习
AAI机器之心
目标跟踪算法学习人工智能深度学习计算机视觉pytorch
在使用多目标跟踪算法时,接触到卡尔曼滤波,一直没时间总结下,现在来填坑。1.背景知识在理解卡尔曼滤波前,有几个概念值得考虑下:时序序列模型,滤波,线性动态系统1.时间序列模型时间序列模型都可以用如下示意图表示:这个模型包含两个序列,一个是黄色部分的状态序列,用X表示,一个是绿色部分的观测序列(又叫测量序列、证据序列、观察序列,不同的书籍有不同的叫法,在这里统一叫观测序列。)用Y表示。状态序列反应了
- 大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
laafeer
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 雷达目标跟踪算法流程(最全讲解 & 按步骤即可实现)
深耕智能驾驶
目标跟踪系列目标跟踪算法人工智能
雷达目标跟踪算法流程(最全讲解&按步骤即可实现)本文详细介绍了基于毫米波雷达点云数据的目标跟踪过程及算法。1.目标跟踪的算法框架如下图所示2.具体实现内容2.1点云数据处理雷达目标点云包含的目标信息有:距离、方位角、俯仰角、速度、幅度等,详细特征可参考我的另一篇文章:点云特征有哪些&特征含义&统计算方法(1)坐标转换点云信息从雷达极坐标转换到直角坐标系:x=R×sin(θ)sin(ɸ),y=R×c
- 多目标跟踪算法原理(Sort&DeepSort&ByteTrack)
幸运的的飞起
目标跟踪算法人工智能
目录前言:主要步骤:一、Sort算法流程图:算法步骤:知识掌握:IOU匹配:卡尔曼滤波算法:匈牙利算法:具体流程:算法步骤(假设矩阵为NxN方阵):举个实例:假设有3个工人和3个任务,每个工人可以完成每项任务的不同工作量。我们的目标是将工人分配到任务上,使得总工作量最小。二、DeepSort算法流程图:算法步骤:必备知识:级联匹配:三、ByteTrack算法主要思想:BYTE流程图:BYTE步骤:
- DeepSORT(特点和核心)
New___dream
深度学习YOLOYOLO笔记python
DeepSORT是一种基于深度学习的目标跟踪算法,它结合了卡尔曼滤波和匈牙利算法,可以在视频中对目标进行跟踪。DeepSORT的主要优点是可以在多个帧之间跟踪目标,即使目标在某些帧中消失或重新出现。它还可以处理多个目标之间的交叉和遮挡。以下是DeepSORT的一些关键特点:1.使用卷积神经网络(CNN)进行目标检测,以识别视频帧中的目标。2.使用卡尔曼滤波进行目标跟踪,以预测目标的位置和速度。3.
- 深度学习多目标跟踪算法综述
ZwdvIot
深度学习目标跟踪算法
多目标跟踪是计算机视觉领域中一个重要的任务,旨在从视频序列中准确地检测和跟踪多个目标。近年来,随着深度学习技术的快速发展,深度多目标跟踪算法在提高准确性和鲁棒性方面取得了显著的进展。本文将综述当前流行的深度多目标跟踪算法,并提供相应的源代码示例。一、基于深度学习的多目标跟踪算法简介单阶段多目标跟踪算法单阶段多目标跟踪算法将目标检测和目标跟踪任务融合在一起,通过单个神经网络模型实现端到端的目标跟踪。
- 基于深度学习的典型目标跟踪算法
LittroInno
目标跟踪人工智能计算机视觉yolov8深度学习
目标跟踪是计算机视觉领域中一个重要的任务,它涉及在视频序列中持续地定位和追踪目标对象。以下是一些常见的深度学习目标跟踪算法:SiameseNetwork:Siamese网络是一种孪生网络结构,它通过将目标图像与周围环境进行对比,学习目标的特征表示。其中,有著名的算法如SiamFC(FullyConvolutional)和SiamRPN(RegionProposalNetwork)。Correlat
- OpenCV快速入门:移动物体检测和目标跟踪
92岁高龄码农
#OpenCVopencv目标跟踪人工智能
文章目录前言一、移动物体检测和目标跟踪简介1.1移动物体检测的基本概念1.2移动物体检测算法的类型1.3目标跟踪的基本概念1.4目标跟踪算法的类型二、差值法检测移动物体2.1差值法原理2.2差值法公式2.3代码实现2.3.1视频或摄像头检测移动物体2.3.2随机动画生成的移动物体检测三、基于模板的跟踪3.1模板跟踪原理3.2模板跟踪公式3.3代码实现3.3.1视频或摄像头中的目标跟踪3.3.2随机
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">