- Python 机器学习实战:基于 Scikit-learn
大力出奇迹985
python机器学习scikit-learn
本文围绕《Python机器学习实战:基于Scikit-learn的项目开发》展开,先介绍Scikit-learn库的基础特性与优势,再阐述机器学习项目开发的完整流程,包括数据收集与预处理、模型选择与训练、评估与优化等。通过具体实战案例,展示如何运用Scikit-learn解决分类、回归等问题,最后总结学习要点与未来学习方向,为读者提供系统的实战指导,助力快速掌握基于Scikit-learn的机器学
- 《机器学习实战》笔记(03):决策树
巨輪
机器学习机器学习决策树
决策树kNN算法可以完成很多分类任务,但是它最大的缺点就是给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解决策树的构造优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。创建分支的伪代码函数createBranch()Checkifeveryiteminthedatasetisinthesa
- 机器学习实战笔记(四):决策树(Python3 实现)
max_bay
机器学习实战笔记机器学习实战决策树python
1决策树的构造1.1决策树的特点优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集。这些数据子集会分
- 深入TA-Lib:量化技术指标详解
深入TA-Lib:量化技术指标详解本文系统讲解TA-Lib技术指标分析,涵盖基础、数据处理、趋势与动量指标、均量线、布林线等,并结合Python代码与大数据、机器学习实战案例,助力读者掌握量化交易实战技巧。本文系统梳理了TA-Lib技术指标分析的核心内容,包括TA-Lib基础、数据处理、趋势与动量指标、均量线、布林线等关键技术指标分析方法,并结合Python代码示例与大数据、机器学习的融合实战案例
- 板凳-------Mysql cookbook学习 (十一--------4)
唐宇迪机器学习实战课程笔记https://blog.csdn.net/weixin_54338498/article/details/128818007?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ECtr-1-12881
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- Python机器学习实战:推荐系统的原理与实现方法
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:推荐系统的原理与实现方法1.背景介绍1.1问题的由来在当今数字化时代,推荐系统已成为电子商务、媒体流媒体平台、社交媒体以及在线购物网站的核心组件之一。推荐系统旨在根据用户的历史行为、偏好以及社会关系等因素,为用户提供个性化的内容或商品建议,从而提高用户体验、增加用户粘性,并提升业务转化率。1.2研究现状随着大数据和深度学习技术的快速发展,推荐系统正从基于规则的简单过滤模型
- 机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现
微学AI
机器学习实战项目机器学习数学建模人工智能
大家好,我是微学AI,今天给大家介绍一下机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现。文章目录一、项目介绍二、项目背景三、数学原理与算法分析动态规划模型遗传算法设计编码方案适应度函数约束处理算法参数能量消耗模型一泵房能耗二泵房能耗效率计算模型四、系统特性与创新点代码实现基于python实现完整代码五、应用价值与扩展方向六、结论一、项目介绍本项目是一个基于动态规划和遗传算法的水泵调
- 机器学习实战---书中谬误讨论
奔跑的石头_
机器学习机器学习numpy
关注公众号“码字读书会”,了解最新消息。5.2.3节首先要把5.2.2节内容做了,不然得不到回归系数weights值。即dataArr,labelMat=logRegres.loadDataSet()logRegres.gradAscent(dataArr,labelMat)reload(logRegres)logRegres.plotBestFit(weights.getA())此处画图做拟合曲
- Python机器学习实战:使用Pandas进行数据预处理与分析
AI天才研究院
AIAgent应用开发计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:使用Pandas进行数据预处理与分析1.背景介绍在机器学习和数据科学领域中,数据预处理是一个至关重要的步骤。原始数据通常存在噪声、缺失值、异常值等问题,直接将其输入机器学习模型会导致模型性能下降。因此,对数据进行清洗、转换和规范化等预处理操作是必不可少的。Pandas是Python中广泛使用的数据分析库,提供了高性能、易于使用的数据结构和数据分析工具。它可以高效地处理结构
- Python机器学习实战:智能聊天机器人的构建与优化
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:智能聊天机器人的构建与优化作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能与聊天机器人的发展历程1.1.1人工智能的起源与发展人工智能(ArtificialIntelligence,AI)的起源可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。随后,人工智能经历了几次高潮和低谷,期间涌现出许多重要的理论和算法,例如符号主义、连接主义、专家系统
- 分享全国数字人才技能提升师资培训班 第五期邀请函
泰迪智能科技01
人工智能人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 分享全国数字人才技能提升师资培训班 第五期
泰迪智能科技01
人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- python3源代码_机器学习实战源代码python3
weixin_39955781
python3源代码
机器学习实战源代码python3\machinelearninginaction\.git\COMMIT_EDITMSG机器学习实战源代码python3\machinelearninginaction\.git\config机器学习实战源代码python3\machinelearninginaction\.git\description机器学习实战源代码python3\machinelearnin
- Python机器学习实战:分布式机器学习框架Dask的入门与实战
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:分布式机器学习框架Dask的入门与实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,数据量的爆炸式增长使得传统的单机处理方式逐渐显得力不从心。无论是数据预处理、特征工程还是模型训练,单机环境下的计算资源和内存限制都成为了瓶颈。为了应对这些挑战,分布式计算框架应运而生。Das
- 【机器学习实战】监督学习:使用 Scikit-learn 库训练一个房价预测模型
phenix_01
机器学习学习scikit-learn
一、引言在机器学习领域,监督学习是一种通过已有标注数据训练模型,从而对新数据进行预测的重要方法。房价预测作为回归问题的典型应用,在房地产分析、投资决策等场景中具有重要价值。本文将基于Scikit-learn库,完整演示从数据准备到模型评估的全流程,带领读者掌握房价预测模型的构建方法。二、数据准备:从Kaggle获取数据集本文使用Kaggle上的经典波士顿房价数据集(BostonHousingDat
- 机器学习实战02:学生成绩预测与可视化分析
梦弦18
机器学习信息可视化
目录一、项目背景二、数据读取与初步处理三、数据可视化分析(一)相关性矩阵热图(二)父母教育水平与成绩关系(三)种族与成绩关系(四)测试准备课程与成绩关系(五)其他分析四、机器学习模型构建与评估(一)数据预处理(二)模型训练与评估五、总结六、全代码七.数据集callme在教育领域,了解影响学生成绩的因素并对成绩进行预测,对提升教学质量、制定个性化学习方案具有重要意义。本文将通过一个机器学习实战项目,
- Python机器学习实战:掌握NumPy的高效数据操作
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
NumPy,Python,机器学习,数据操作,数组,向量,矩阵,线性代数,科学计算1.背景介绍在机器学习领域,数据是至关重要的资源。高效、准确地处理和操作数据是机器学习模型训练和应用的基础。NumPy(NumericalPython)作为Python生态系统中强大的数值计算库,为机器学习提供了高效的数据结构和操作工具。NumPy的核心是ndarray(n-dimensionalarray)数据结构
- 机器学习实战步骤与案例
enyp80
机器学习
机器学习实战需要结合理论和实践,以下是一个清晰的实战步骤指南,涵盖关键工具、常见任务示例以及避坑建议,帮助你快速上手:一、机器学习实战核心步骤明确问题与数据准备任务类型:分类、回归、聚类、强化学习?数据来源:Kaggle、UCI、公开API、爬虫或业务数据库。数据格式:结构化数据(CSV/SQL)或非结构化数据(图片/文本)。工具推荐:数据清洗:Pandas、NumPy可视化:Matplotlib
- 机器学习实战:6种数据集划分方法详解与代码实现
慕婉0307
机器学习机器学习人工智能深度学习数据集划分
在机器学习项目中,合理划分数据集是模型开发的关键第一步。本文将全面介绍6种常见数据格式的划分方法,并附完整Python代码示例,帮助初学者掌握这一核心技能。一、数据集划分基础函数1.核心函数:train_test_splitfromsklearn.model_selectionimporttrain_test_split#基本用法X_train,X_test,y_train,y_test=trai
- 机器学习实战:鸢尾花分类
学术乙方
Python机器学习分类人工智能
项目目标使用经典的鸢尾花数据集(IrisDataset),通过支持向量机(SVM)算法训练一个分类模型,能够根据花瓣和萼片的测量数据预测鸢尾花的种类。环境准备Python#需要安装的库(在终端运行)pipinstallnumpypandasmatplotlibscikit-learn完整代码实现#1.导入必要的库importnumpyasnpimportpandasaspdfromsklearni
- 机器学习实战:以鸢尾花数据集分类问题为例
Tech Synapse
机器学习分类人工智能SVMscikit-learn鸢尾花数据集
在当今数据驱动的时代,机器学习已成为解决复杂问题的重要工具。本文将通过一个具体的分类问题——鸢尾花数据集(IrisDataset)的分类,展示如何在实际项目中应用机器学习。我们将使用Python编程语言,并借助流行的机器学习库scikit-learn来实现这一目标。文章将详细介绍数据预处理、模型选择、训练、评估以及预测等步骤,并提供完整且可直接运行的代码示例。一、项目背景与数据集介绍鸢尾花数据集是
- 从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南
灏瀚星空
python机器学习开发语言学习人工智能算法金融
从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南引言在算法交易席卷全球金融市场的今天,搭建一套高可用的量化工具链已成为开发者掘金Alpha的核心竞争力。然而,面对庞杂的技术组件——从海量数据的清洗对齐、策略逻辑的回测验证,到机器学习模型的实盘部署——许多开发者陷入困境:Pandas处理Tick数据内存爆炸怎么办?回测曲线完美但实盘表现惨淡如何归因?深度学习模型预测准确却无法
- 机器学习实战:PyTorch 与 Sklearn 线性回归模型大对决
#guiyin11
机器学习pytorchsklearn
一、引言在机器学习领域,模型的构建和训练依赖于各种工具和框架。PyTorch和Sklearn作为其中的佼佼者,在实现线性回归模型时各有千秋。深入了解它们的差异和优势,对提升模型性能和开发效率意义重大。本文将全面剖析这两个框架在构建和训练线性回归模型方面的特点。二、实验原理(一)线性回归基本原理线性回归旨在寻找输入特征X与输出标签y的线性关系,通过公式y=Xθ+ϵ来描述。其中,θ是待估参数,ϵ为随机
- Python机器学习实战:机器学习在金融风险评估中的应用
AI天才研究院
AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:机器学习在金融风险评估中的应用1.背景介绍金融风险评估是金融行业中至关重要的一环。随着数据量的爆炸性增长和计算能力的提升,机器学习在金融风险评估中的应用变得越来越普遍。通过机器学习算法,我们可以更准确地预测违约风险、市场风险和操作风险,从而帮助金融机构做出更明智的决策。2.核心概念与联系2.1机器学习概述机器学习是一种通过数据训练模型,使其能够自动改进和预测的技术。它主要
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l