- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- MikroTik RouterOS 6.49.2 x86_64架构 L6全功能版本
伍熠逸Peg
MikroTikRouterOS6.49.2x86_64架构L6全功能版本【下载地址】MikroTikRouterOS6.49.2x86_64架构L6全功能版本这是一个基于MikroTikRouterOS6.49.2的OVA虚拟机版本,专为x86_64架构设计,搭载L6级全功能许可,支持升级至7.x版本。该版本已集成vmxnet3万兆网卡驱动,并支持2GB以上内存,适用于VMwareWorksta
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- 《动手学深度学习》-2.1. 数据操作
SSWDUT
动手学深度学习深度学习人工智能
2.1.数据操作为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。如果没有某种方法来存储数据,那么获取数据是没有意义的。首先,我们介绍n维数组,也称为张量(tensor)。使用过Python中NumPy计算包的读者会对本部分很熟悉。无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray,在P
- MXNet深度学习框架入门指南:核心概念与架构解析
陆璞朝Jocelyn
MXNet深度学习框架入门指南:核心概念与架构解析mxnet项目地址:https://gitcode.com/gh_mirrors/mx/mxnet什么是MXNetApacheMXNet是一个开源的深度学习框架,它提供了全面而灵活的API来创建深度学习模型。作为现代深度学习的重要工具,MXNet在工业界和学术界都得到了广泛应用。MXNet的核心优势高性能与可扩展性:原生支持多GPU和分布式多主机任
- Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进
陆或愉
Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进Dive-into-DL-PyTorch本项目将《动手学深度学习》(DiveintoDeepLearning)原书中的MXNet实现改为PyTorch实现。项目地址:https://gitcode.com/gh_mirrors/di/Dive-into-DL-PyTorch引言目标检测是计算机视觉领域的核心任务之一
- 解决Linux服务器MXNet安装与`npx`模块问题
cocogogogo
服务器linuxmxnet
解决Linux服务器MXNet安装与npx模块问题背景在Ubuntu18.04服务器上,通过Mac终端在pytorch_env(Python3.9.21)中解决MXNet相关错误,最终实现npx模块使用。问题及解决步骤1.问题:AttributeError:module'numpy'hasnoattribute'bool'环境:MXNet1.5.1,NumPy1.24.4。原因:NumPy1.20
- EXO:模型最终验证的地方;infer_tensor;step;MLXDynamicShardInferenceEngine
ZhangJiQun&MXP
2024大模型以及算力2021AIpython教学语言模型transformer人工智能
目录EXO:模型最终验证的地方EXO:infer_tensorEXO:stepMXNet的mx.array类型是什么NDArray优化了什么1.异步计算和内存优化2.高效的数学和线性代数运算3.稀疏数据支持4.自动化求导举例说明EXO:模型最终验证的地方EXO:infer_tensor这段代码定义了一个名为infer_tensor的异步方法,它属于某个类(虽然类名未在此代码段中给出)。这个方法的目
- 深度学习模型优化与行业应用新突破
智能计算研究中心
其他
内容概要当前深度学习模型优化正经历多维技术革新,核心突破集中在算法效率与场景适配性提升。以自适应学习优化和超参数调优为代表的动态调整机制,显著降低了模型训练对人工经验的依赖。主流框架如MXNet与PyTorch在分布式计算、自动微分等关键能力上形成差异化优势(见表1),而边缘计算与联邦学习的融合,则通过本地化数据处理与隐私保护机制,为医疗影像诊断、金融风险预测等高敏感场景提供了可信部署方案。框架特
- 模型优化技术驱动行业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术正通过多维度创新重构行业应用版图。从底层框架演进看,TensorFlow、PyTorch与MXNet等主流工具通过自适应学习机制与参数化建模能力,显著提升了模型训练效率;而在技术融合层面,联邦学习与边缘计算的协同部署方案,为解决数据隐私与算力瓶颈提供了新范式。与此同时,量子计算驱动的新型优化算法正突破传统数学模型的性能边界,结合可解释性增强与超参数动态调整策略,使医疗诊断、
- 智能模型优化趋势与行业实践突破
智能计算研究中心
其他
内容概要当前智能模型优化技术正沿着多维度路径加速演进,其中自动化机器学习(AutoML)与可解释性模型的融合成为降低技术门槛的核心方向。从技术演进路径来看,边缘计算与联邦学习的结合显著提升了分布式场景下的模型效率,而量子计算的引入则为复杂优化问题提供了突破性思路。与此同时,MXNet、PyTorch等主流框架在动态计算图与分布式训练方面的创新,进一步推动了行业模型的快速迭代。为系统呈现技术趋势与实
- 模型优化技术演进与行业场景突破
智能计算研究中心
其他
内容概要模型优化技术正经历从算法改进到系统级创新的范式跃迁。随着自动化机器学习(AutoML)与联邦学习技术的成熟,模型开发效率与隐私保护能力显著提升,而模型压缩技术则推动轻量化部署在边缘计算场景中加速落地。与此同时,量子计算为优化算法提供了新的计算维度,MXNet、PyTorch等框架通过动态计算图特性,在医疗影像识别和语音交互领域实现推理速度的突破性进展。技术演进阶段核心技术突破典型应用场景主
- 智能模型优化与跨行业应用趋势
智能计算研究中心
其他
内容概要智能模型优化技术正经历多维度的范式突破,从算法架构到部署模式均呈现显著变革。核心演进路径涵盖三大维度:在技术层,自动化机器学习(AutoML)与自适应学习优化技术大幅降低建模门槛,结合超参数优化与正则化方法,实现模型性能与效率的平衡;在架构层,边缘计算与联邦学习推动分布式模型部署,MXNet、PyTorch等框架通过模型压缩与量化技术,适配低功耗设备部署需求;在应用层,医疗诊断、金融预测等
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- AI学习预备知识-数据操作(5)内存节省
羞涩的小吉他
AI开发学习之路人工智能学习
AI学习预备知识-数据操作(5)内存节省提示:本系列持续更新中文章目录AI学习预备知识-数据操作(5)内存节省前言内存节省总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,本文主要讲解AI学习储备知识–在数据操作过程中所需考虑到的内存节省。内存节省提示:默认使用python,数据操作使用mxnet在数据操作过程中运行一些操作可能会导致
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- Apache MXNet:灵活高效的深度学习库
零 度°
python深度学习apachemxnet
ApacheMXNet是一个开源的深度学习框架,适用于灵活的研究原型设计和生产。它提供了一个混合前端,可以无缝地在Gluon(动态图)和Symbolic(静态图)模式之间转换,以提供灵活性和速度。MXNet支持多种语言绑定,包括Python、Scala、Julia、Clojure、Java、C++、R和Perl,并且拥有一个活跃的工具和库生态系统,可以扩展MXNet的功能,支持计算机视觉、自然语言
- Apache MXNet 深度学习框架教程
娄妃元Kacey
ApacheMXNet深度学习框架教程mxnetLightweight,Portable,FlexibleDistributed/MobileDeepLearningwithDynamic,Mutation-awareDataflowDepScheduler;forPython,R,Julia,Scala,Go,Javascriptandmore项目地址:https://gitcode.com/g
- Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)
盼小辉丶
julia深度学习cmakelinuxmxnetjulialanguage深度学习
Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)环境介绍与注意事项下载源文件安装依赖编译环境配置安装MXNet测试后记环境介绍与注意事项Ubuntu18.04julia1.5.3CUDA10.1(为了GPU支持,需要安装CUDA和cudnn,可以参考博客,若CUDA版本不同,参考此网站下载合适的MXNet版本)安装MXNet的julia绑定,经过多次测试,并不能
- MXNet深度学习框架:高效与灵活性的结合
原机小子
深度学习mxnet人工智能
标题:MXNet深度学习框架:高效与灵活性的结合MXNet是一个由Apache软件基金会支持的开源深度学习框架,以其高效性能和灵活性而闻名。它最初由亚马逊团队开发,并于2015年开源,迅速成为深度学习领域的一个重要工具。MXNet支持多种编程语言,包括Python、Java、Scala、R、C++等,能够运行在CPU、GPU和云平台上,满足不同场景下的需求。1.MXNet的核心特性MXNet的主要
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- Task01:线性回归;Softmax与分类模型、多层感知机
恰人陈
pytorch机器学习深度学习神经网络
一、mxnet相关函数用法mxnet.nd用法对标numpy库(1)nd.concatfrommxnetimportndnd.concat(X,Y,dim=0)nd.concat(X,Y,dim=1)X,Y为两个矩阵nd.concat为连接矩阵,dim表示连接的维度,若原来两个矩阵为(4,3),dim=0就表示新生成矩阵为(8,3)dim=1表示新生成矩阵为(4,6)(2)y+=xy=y+x这样的
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 《动手学深度学习》(PyTorch版)
chaser&upper
深度学习pytorch深度学习python
《动手学深度学习》PyTorch版前言简介面向人群食用方法方法一方法二方法三目录原书地址引用阅读指南前言读书啦!!!本项目将《动手学深度学习》原书中MXNet代码实现改为PyTorch实现。原书作者:阿斯顿·张、李沐、扎卡里C.立顿、亚历山大J.斯莫拉以及其他社区贡献者,GitHub地址:https://github.com/d2l-ai/d2l-zh此书的中英版本存在一些不同,针对此书英文版的P
- 使用onnxruntime-web 运行yolov8-nano推理
CHEN_RUI_2200
机器学习YOLO
ONNX(OpenNeuralNetworkExchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8识别预览图片:1.跨平台兼容性ONNX是一种开放的格式,可以在不同的深度学习框架之间共享模型,如PyTorch、TensorFlow、MXNet和Caffe2。这使得用户可以在一个框架中训练模
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe