- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- CIRL:因果启发的表征学习框架——从域泛化到奖励分解的因果革命
大千AI助手
人工智能Python#OTHER学习深度学习人工智能机器学习表征学习因果推断域泛化
CIRL(因果启发的表征学习)是由国内顶尖AI研究团队于CVPR2022提出的创新框架,最初用于解决域泛化(DomainGeneralization,DG)问题,其核心思想是通过结构因果模型(SCM)分离数据中的因果与非因果因素,构建鲁棒表征。后续研究(如GRD、Diaster算法)将其扩展至强化学习的奖励分解领域,通过因果充分性、稀疏性与正交性约束,解决延迟奖励与奖励黑客问题。原始论文发表于CV
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 基于强化学习的工业SCR脱硝系统控制算法设计与实现
pk_xz123456
算法python人工智能python深度学习数据挖掘
基于强化学习的工业SCR脱硝系统控制算法设计与实现1.引言选择性催化还原(SCR)脱硝系统是火电厂等工业设施中用于降低氮氧化物(NOx)排放的关键环保设备。传统的PID控制方法在面对SCR系统非线性、大滞后等特性时往往表现不佳。本文将详细介绍如何利用强化学习技术设计智能控制器,实现SCR脱硝系统的优化控制。2.系统概述与问题分析2.1SCR脱硝系统工作原理SCR系统通过在催化剂作用下,向烟气中喷入
- 【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究Matlab代码
Matlab科研工作室
无人机边缘计算matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- AI人工智能领域深度学习的机器人控制技术
AI智能架构工坊
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习机器人ai
AI人工智能领域深度学习的机器人控制技术:让机器人像人类一样“聪明”行动关键词:深度学习、机器人控制、强化学习、端到端控制、具身智能摘要:本文将带您走进“深度学习+机器人控制”的奇妙世界。我们会用“教机器人端咖啡”这样的生活案例,从核心概念讲到底层原理,再通过实战代码演示如何用深度学习让机器人完成复杂任务。无论您是技术小白还是开发者,都能轻松理解深度学习如何赋予机器人“思考”和“适应”能力,以及未
- 第十四章、完全合作关系设定下的多智能体强化学习(MAC-A2C)
跳跳糖炒酸奶
强化学习算法强化学习人工智能python算法
0前言根据上一章的内容,已知完全合作关系下的多智能体利益一致有相同的目标,获得的奖励相同即Rt1=Rt2=Rt3R^1_t=R^2_t=R^3_tRt1=Rt2=Rt3。1完全合作关系设定下的策略学习要注意的点:状态S=[O1,O2,⋯ ,Om]S=[O^1,O^2,\cdots,O^m]S=[O1,O2,⋯,Om],所有智能体的观测之和是状态。动作A=[A1,A2,⋯ ,Am]A=[A^1,A^
- Kimi-Researcher 技术实现深度解析
李昕壑
人工智能
Kimi-Researcher是一款基于端到端自主强化学习技术构建的智能研究助手,其核心技术在于通过单一模型自主决策和执行复杂研究任务,无需预设工作流程。它具备轻量化的长时记忆机制和潜在的多模态处理能力,能够高效地进行并行搜索和灵活的工具调用,从而完成从信息搜集、分析到报告生成的全过程。1.Kimi-Researcher核心工作机制概述Kimi-Researcher作为一款专注于深度研究的Agen
- PPO:强化学习中的近端策略优化——原理、演进与大规模应用实践
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法PPO近端策略优化优化
近端策略优化(ProximalPolicyOptimization,PPO)是由OpenAI团队于2017年提出的策略梯度强化学习算法,通过裁剪概率比目标函数约束策略更新幅度,解决了传统策略梯度方法训练不稳定、易发散的核心问题。该算法兼具信赖域策略优化(TRPO)的稳定性与一阶优化的简洁性,已成为深度强化学习(DRL)和大语言模型对齐(RLHF)的事实标准算法。本文由「大千AI助手」原创发布,专注
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- 大模型就业方向
有如下几个方向:基座模型训练工作内容:优化模型结构、数据比例,实现在各种任务上效果比较好的通用基座模型护城河:出了问题只有你能解决,给足情绪价值经验要求:必备:模型分布式框架(如deepspeed)、多机多卡训练、顶会的经验;阅读一系列LLM经典论文,例如Instruct-GPT、LORA等,从而对LLM有一个更深入、透彻的掌握。同任选:万卡集群的训练经验(包括预训练、sft、强化学习)、踩坑经验
- 使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
茫茫人海一粒沙
Lorallama
本文将介绍如何基于Meta的LLaMA38B模型构建并微调一个RewardModel,它是构建RLHF(基于人类反馈的强化学习)系统中的关键一环。我们将使用HuggingFace的transformers、trl和peft等库,通过参数高效微调(LoRA)实现高质量RewardModel的训练。什么是RewardModel?RewardModel(RM)是RLHF流程中的评分器,它学习人类偏好:在
- 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
基于强化学习在云计算环境中的虚拟机资源调度研究随着云计算规模的持续扩大,数据中心虚拟机资源调度面临动态负载、异构资源适配及多目标优化等挑战。传统启发式算法在复杂场景下易陷入局部最优,而深度强化学习(DRL)凭借序贯决策能力为该问题提供了新路径。本研究以动态多目标组合优化理论为基础,结合CloudSimPy仿真框架与TensorFlow,构建“仿真-训练-验证”闭环调度系统,重点设计动态加权多目标奖
- LLM指纹底层技术——人类反馈强化学习
9命怪猫
AI深度学习机器学习人工智能大模型ai算法
以下简单讲一下“LLM指纹”体系中,负责精雕细琢模型“性格”与“价值观”的核心工艺——人类反馈强化学习(ReinforcementLearningfromHumanFeedback,RLHF)。预训练给模型注入了海量的知识(IQ),指令微调(SFT)教会了它基本的沟通技能(学会说话),RLHF对模型进行的一场深刻的“情商与价值观”教育。这个过程极大地塑造了模型的行为边界、风格偏好和安全意识,是形成
- Python强化学习实战:从游戏AI到工业控制的完整指南
全息架构师
AI行业应用实战先锋Python实战项目大揭秘python游戏人工智能
Python人工智能模型训练实战(六):强化学习从入门到工业级应用核心价值前情提要:我们已经完成了监督学习和AutoML的完整流程。本期将探索人工智能的另一个重要领域——让机器通过试错自主学习的强化学习技术!本期亮点:4大核心强化学习算法完整实现从游戏AI到工业控制的实战案例生产环境部署与性能优化技巧分布式强化学习系统架构完整的可运维代码实现强化学习算法对比(表格呈现)算法类型适用场景优势实现模块
- 强化学习在AI Agent资源调度中的应用
AI大模型应用实战
人工智能ai
强化学习在AIAgent资源调度中的应用关键词:强化学习、AIAgent、资源调度、马尔可夫决策过程、策略梯度算法摘要:本文聚焦于强化学习在AIAgent资源调度中的应用。首先介绍了强化学习和AIAgent资源调度的背景知识,明确了文章的目的、范围和预期读者。接着详细阐述了核心概念及其联系,包括强化学习和AIAgent资源调度的原理和架构,并通过Mermaid流程图进行直观展示。深入讲解了核心算法
- AI 驱动自动化运维平台架构与实现
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3算法机器学习人工智能决策树大数据
摘要:随着云计算、容器化和大规模分布式系统的普及,传统人工运维方法已难以满足现代IT环境中海量指标、日志和拓扑关系的实时分析与故障响应需求。AI驱动的自动化运维(AIOps)平台通过融合机器学习、深度学习、图分析以及强化学习等多学科技术,实现对海量运维数据的智能感知、预测、诊断和自动化修复。本文深入探讨AI驱动自动化运维平台的整体架构设计与核心技术实现,涵盖数据采集与预处理、AI引擎设计、自动化执
- 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法
彬彬侠
Python基础pythonGym强化学习RLGymnasium
Gym是Python中一个广泛使用的开源库,用于开发和比较强化学习(ReinforcementLearning,RL)算法。它最初由OpenAI开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试RL算法。Gym的设计简单且灵活,适合学术研究和工业应用。2022年,Gym被整合到Gymnasium(由FaramaFoundation维护)中,成为主流的强化学习
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 迈向大型推理模型:基于大型语言模型的强化推理综述(附教程)
LLM大模型
人工智能自然语言处理知识库本地化部署吴恩达大模型RAG
语言长期以来被认为是人类推理的基本工具。大型语言模型(LLM)的突破激发了大量研究兴趣,推动了利用这些模型解决复杂推理任务的探索。研究人员通过引入“思维”这一概念——即一系列代表推理过程中的中间步骤的标记——超越了简单的自回归标记生成。这一创新范式使LLMs能够模仿复杂的人类推理过程,如树搜索和反思性思维。近年来,学习推理的趋势逐渐兴起,强化学习(RL)被应用于训练LLMs掌握推理过程。这种方法通
- 强化学习 DAY1:什么是 RL、马尔科夫决策、贝尔曼方程
feifeikon
机器学习人工智能深度学习
第一部分RL基础:什么是RL与MRP、MDP1.1入门强化学习所需掌握的基本概念1.1.1什么是强化学习:依据策略执行动作-感知状态-得到奖励强化学习里面的概念、公式,相比ML/DL特别多,初学者刚学RL时,很容易被接连不断的概念、公式给绕晕,而且经常忘记概念与公式符号表达的一一对应。为此,学习RL的第一步就是一定要扎实关于RL的一些最基本的概念、公式(不要在扎实基础的阶段图快或图囵吞枣,不然后面
- 机器人-组成结构-感知 - 决策 - 执行
具身智能-查布嘎
具身智能机器人人工智能
目录一、感知系统内部传感器:外部传感器:二、智能决策系统机器学习家族1.1机器学习2.1深度学习2.2深度学习模型(主要属于监督/强化学习范畴,但结构通用):3.1监督学习3.2监督学习模型4.1半监督学习4.2无/半监督学习模型:5.1无监督学习5.2生成模型(可属于监督/无监督):6.1强化学习7.1其他学习三、控制系统(运控)①对应小脑和脊柱一、感知系统①对应人体的五官。由具有不同功能的各种
- GENERALIST REWARD MODELS: FOUND INSIDE LARGELANGUAGE MODELS
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习计算机视觉
GeneralistRewardModels:FoundInsideLargeLanguageModelshttps://arxiv.org/pdf/2506.232351.概述将大型语言模型(LLMs)与复杂的人类价值观(如乐于助人和诚实)对齐,仍然是人工智能发展中的一个核心挑战。这项任务的主要范式是来自人类反馈的强化学习(RLHF)[Christianoetal.,2017;Baietal.,
- [论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制
王莽v2
机器人神经网络神经网络算法控制器
[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制摘要本文研究了在水平面内运动的全驱动自主水下机器人的轨迹跟踪问题。在我们的控制设计中考虑了外部干扰、控制输入非线性和模型不确定性。基于离散时间域的动力学模型,两个神经网络(包括一个临界神经网络和一个作用神经网络)被集成到我们的自适应控制设计中。引入临界神经网络来评价设计的控制器在当前时间步长内的长期性能,并利用作用神经网络来补偿未知动
- 【深度强化学习】MIP-DQN 实现案例(完整Python代码)
目录MIP-DQN算法概述建模基础训练阶段(Training)部署阶段(OnlineExecution)DNN网络转化为MIP表达式性能指标完整Python代码实现主函数:random_generator_battery模型函数:MIP_DQN基础/专用库包安装模型运行(完整Python代码)参数设置函数:Parameters参考本博客根据论文《Optimalenergysystemschedul
- Java 大视界 -- Java 大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用
青云交
大数据新视界Java大视界java大数据机器学习情绪分析智能投资多源数据
Java大视界--Java大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用)引言:正文:一、金融情绪数据的立体化采集与治理1.1多模态数据采集架构1.2数据治理与特征工程二、Java机器学习模型的工程化实践2.1情感分析模型的深度优化2.2强化学习驱动的动态投资策略三、顶级机构实战:Java系统的金融炼金术四、技术前沿:Java与金融科技的未来融合4.1量子机器学习集成4.2联邦学习在合
- 强化学习在成语接龙比赛中的应用
LucienCho
题目:裁判任意给出一个成语,比赛双方在有限的时间里轮流进行成语对答,要求:1.成语的首字要与上一个成语的尾字同声同调;2.当前比赛出现的所有成语不能再次出现;3.必须为四字成语分析:看到这个题目,笔者本能的想法是用现成代码跑一跑。但是在git上搜不到能赢得比赛的成语接龙代码,大多数代码只是实现了成语接龙的功能,随机找出符合规则的成语,不足以想赢得比赛,所以打算自己尝试。重新分析一遍规则吧!若不考虑
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》