第十三周作业:scipy练习

Exercise 10.1: Least Squares

题目描述

第十三周作业:scipy练习_第1张图片

代码:

import numpy as np   
m = 20
n = 10
A = np.random.randint(0, 10, (m,n))  
B = np.random.randint(0, 10, (m,1))  

res = np.linalg.lstsq(A, B, rcond=0)  
# x
print(res[0])  
# residual
print(res[1])  

Exercise 10.2:Optimization

题目描述

这里写图片描述

代码:

import numpy as np  
from scipy.optimize import minimize  

def func(x):  
    return np.sin(x-2)**2*np.exp((-1)*x**2)*(-1)  

res = minimize(func,0)  
print(-res.fun)

Exercise 10.3:Pairwise distances

题目描述

第十三周作业:scipy练习_第2张图片

代码:

import numpy as np  
from scipy.spatial.distance import pdist  

def mnvector():
    print("m x n matrix:")
    m = 10
    n = 10
    Matrix = np.random.randint(10,30,(m,n))
    Distance = pdist(Matrix,'euclidean')
    print(Matrix)
    print(Distance) 

def ncities():
    print("n cities:")
    m = 10
    Matrix = np.random.randint(10,20,(m,3))
    Distance = pdist(Matrix,'euclidean')
    print(Matrix)
    print(Distance)

def main():   
    mnvector()
    ncities()

if __name__ == '__main__':
    main()

你可能感兴趣的:(python)