You are given an array aa consisting of nn integer numbers.
You have to color this array in kk colors in such a way that:
Obviously, such coloring might be impossible. In this case, print "NO". Otherwise print "YES" and any coloring (i.e. numbers c1,c2,…cnc1,c2,…cn, where 1≤ci≤k1≤ci≤k and cici is the color of the ii-th element of the given array) satisfying the conditions above. If there are multiple answers, you can print any.
Input
The first line of the input contains two integers nn and kk (1≤k≤n≤50001≤k≤n≤5000) — the length of the array aa and the number of colors, respectively.
The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤50001≤ai≤5000) — elements of the array aa.
Output
If there is no answer, print "NO". Otherwise print "YES" and anycoloring (i.e. numbers c1,c2,…cnc1,c2,…cn, where 1≤ci≤k1≤ci≤k and cici is the color of the ii-th element of the given array) satisfying the conditions described in the problem statement. If there are multiple answers, you can print any.
Examples
Input
4 2 1 2 2 3
Output
YES 1 1 2 2
Input
5 2 3 2 1 2 3
Output
YES 2 1 1 2 1
Input
5 2 2 1 1 2 1
Output
NO
Note
In the first example the answer 2 1 2 12 1 2 1 is also acceptable.
In the second example the answer 1 1 1 2 21 1 1 2 2 is also acceptable.
There exist other acceptable answers for both examples.
给k颜色,n个数,问能不能用完所有的颜色且数学相同的颜色不同。
先用完这些颜色,再判断这些数哪种颜色没有用过。注意NO的情况。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define maxn 5006
int a[maxn];
int vis[maxn];
int vis1[maxn];
int ans[maxn][maxn];
int w[maxn];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
int flag=0;
for(int i=1; i<=n; i++)
{
int x;
scanf("%d",&x);
a[i]=x;
vis[x]++;
if(vis[x]>k)
{
flag=1;
}
}
if(flag||k>n)
{
printf("NO\n");
}
else
{
memset(vis,0,sizeof(vis));
int num=0;
for(int i=1; i<=k; i++)
{
//cout<