这一节的目的是说明rational numbers并不是稠密的,一方面在任何两个有理数之间都能插入一个有理数,另一方面实数轴上有些地方,有理数并不能达到。
本节的习题不多,但总体上这一章为下一章讲实数打好了基础。下一章的一些实数性质其实是有理数以(形式)极限形式作拓展后的结果。
Since x x x is rational, we see that one of the three cases must be true: x = 0 , x > 0 , x < 0 x=0,x>0,x<0 x=0,x>0,x<0.
If x = 0 x=0 x=0, let n = 0 n=0 n=0, we have n ≤ x < x + 1 n≤x
If x > 0 x>0 x>0, let x = a / b x=a/b x=a/b, in which a , b a,b a,b are positive integers. Thus by Proposition 2.3.9, we can have
a = b n + q , n , q ∈ N , q < b a=bn+q,\quad n,q∈\mathbf N,qa=bn+q,n,q∈N,q<b
This means
a b = n + q b \frac{a}{b}=n+\frac{q}{b} ba=n+bq
As q < b qq<b and q ∈ N q∈\mathbf N q∈N, we have
1 − q b = b − q b = ( b − q ) ⋅ 1 b > 0 ⇒ 1 > q b ≥ 0 1-\frac{q}{b}=\frac{b-q}{b}=(b-q)⋅\frac{1}{b}>0 ⇒1>\frac{q}{b}≥0 1−bq=bb−q=(b−q)⋅b1>0⇒1>bq≥0
So
n ≤ a b = n + q b < n + 1 n≤\frac{a}{b}=n+\frac{q}{b}
If x < 0 x<0 x<0, let x = − a / b x=-a/b x=−a/b, in which a , b a,b a,b are positive integers. Thus by Proposition 2.3.9, we can have
a = b m + q , n , q ∈ N , q < b a=bm+q,\quad n,q∈\mathbf N,qa=bm+q,n,q∈N,q<b
This means
− a = − b m − q ⇒ x = − a b = − m − q b = − m − 1 + ( 1 − q b ) -a=-bm-q ⇒x=-\frac{a}{b}=-m-\frac{q}{b}=-m-1+(1-\frac{q}{b}) −a=−bm−q⇒x=−ba=−m−bq=−m−1+(1−bq)
As
0 < 1 − q b ≤ 1 0<1-\frac{q}{b}≤1 0<1−bq≤1
We can further divide cases
If 0 < 1 − q / b < 1 0<1-q/b<1 0<1−q/b<1, then let n = − m − 1 n=-m-1 n=−m−1, we have
n < x = n + ( 1 − q b ) < n + 1 n
If 1 − q / b = 1 1-q/b=1 1−q/b=1, then q = 0 q=0 q=0, thus let n = − m n=-m n=−m, we have
n ≤ x = − m = n < n + 1 n≤x=-m=n
We finished the proof of the existence of n n n for every x ∈ Q x∈\mathbf Q x∈Q. To show this n is unique, suppose n 1 ≤ x < n 1 + 1 , n 2 ≤ x < n 2 + 1 n_1≤x
( n 2 < n 1 + 1 ) ∧ ( n 1 < n 2 + 1 ) ⇒ ( n 2 ≤ n 1 ) ∧ ( n 1 ≤ n 2 ) ⇒ n 1 = n 2 (n_2
To see that there’s N > x , ∀ x ∈ Q N>x,∀ x∈\mathbf Q N>x,∀x∈Q, we could find a n n n such that
n ≤ x < n + 1 n≤x
And then let N = n + 1 N=n+1 N=n+1.
( a ) Assume we find a infinite descent sequence { a n } \{a_n \} {an} in N \mathbf N N, then we use induction on k k k to show that a n ≥ k , ∀ k , n ∈ N a_n≥k,∀k,n∈\mathbf N an≥k,∀k,n∈N:
First let k = 0 k=0 k=0, then as all the a n a_n an are natural numbers, we have a n ≥ 0 , ∀ n ∈ N a_n≥0,∀n∈\mathbf N an≥0,∀n∈N.
Now suppose the conclusion is true for K K K, consider K + 1 K+1 K+1, assume we can find a N N N such that
a N < K + 1 ⇒ a N ≤ K a_N
Then as { a n } \{a_n\} {an} is infinite descent, we can have
a N + 1 < a N ≤ K ⇒ a N + 1 < K a_{N+1}
But the induction hypothesis shows a N + 1 ≥ K a_{N+1}≥K aN+1≥K, thus we can’t find such N N N, which means
a n ≥ K + 1 , ∀ n a_n≥K+1,\quad ∀n an≥K+1,∀n
This completes the induction.
Now that we have shown a n ≥ k , ∀ k , n ∈ N a_n≥k,∀k,n∈\mathbf N an≥k,∀k,n∈N, we further show this is impossible:
As { a n } \{a_n\} {an} is in N \mathbf N N, we have a 1 ∈ N a_1∈\mathbf N a1∈N, let k = a 1 k=a_1 k=a1, we shall have
a n ≥ a 1 , ∀ k , n ∈ N a_n≥a_1,\quad ∀k,n∈N an≥a1,∀k,n∈N
This contradicts the infinite descent condition.
( b ) the principle won’t work for integers or rationals. We can choose infinite descent sequence { a n } \{a_n \} {an} in Z \mathbf Z Z as
a n = − n , n ∈ N a_n=-n,\quad \mathbf n∈N an=−n,n∈N
Or infinite descent sequence { a n } \{a_n \} {an} in Q \mathbf Q Q as
a n = 1 n , n ∈ N a_n=\frac{1}{n},\quad n∈\mathbf N an=n1,n∈N
We find there’s 3 gaps marked why?
Gap 1: A natural number is even if p = 2 k p=2k p=2k, odd if p = 2 k + 1 p=2k+1 p=2k+1, in which k ∈ N k∈\mathbf N k∈N, so every natural number is even or odd, but not both.
For ∀ n ∈ N ∀n∈\mathbf N ∀n∈N, we can find m , q ∈ N m,q∈\mathbf N m,q∈N such that
n = 2 m + q , q < 2 n=2m+q,\quad q<2 n=2m+q,q<2
So if q = 0 q=0 q=0, then n n n is even, if q = 1 q=1 q=1, then n n n is odd.
If a number is both odd and even, then we may have m , n ∈ N m,n∈\mathbf N m,n∈N such that
2 m = 2 n + 1 ⇒ m = n + 1 2 2m=2n+1 ⇒m=n+\frac{1}{2} 2m=2n+1⇒m=n+21
This is absurd.
Gap 2: p p p is odd ⇒ p 2 p^2 p2 is odd
We have
( p is odd ) ⇒ ( p = 2 k + 1 , k ∈ N ) ⇒ ( p 2 = 4 k 2 + 4 k + 1 = 2 ( 2 k 2 + 2 k ) + 1 ) ⇒ ( p 2 is odd ) \begin{aligned}(p\text{ is odd})&⇒(p=2k+1,k∈\mathbf N)\\&⇒(p^2=4k^2+4k+1=2(2k^2+2k)+1)\\&⇒(p^2\text{ is odd})\end{aligned} (p is odd)⇒(p=2k+1,k∈N)⇒(p2=4k2+4k+1=2(2k2+2k)+1)⇒(p2 is odd)
Gap 3: For positive integers p , q p,q p,q we have p 2 = 2 q 2 ⇒ q < p p^2=2q^2 ⇒q p2=2q2⇒q<p
We let r = p − q r=p-q r=p−q, then
p 2 = 2 q 2 ⇒ p 2 − q 2 = q 2 ⇒ r ( p + q ) = q 2 p^2=2q^2 ⇒p^2-q^2=q^2 ⇒r(p+q)=q^2 p2=2q2⇒p2−q2=q2⇒r(p+q)=q2
Now since p > 0 , q > 0 p>0,q>0 p>0,q>0, we have q 2 > 0 q^2>0 q2>0, and
p + q > 0 + q > 0 ⇒ 1 p + q > 0 ⇒ q 2 p + q = r > 0 p+q>0+q>0 ⇒ \frac{1}{p+q}>0 ⇒ \frac{q^2}{p+q}=r>0 p+q>0+q>0⇒p+q1>0⇒p+qq2=r>0
This means p > q p>q p>q by definition.