- RK3568笔记九十二:QT使用Opencv显示摄像头
殷忆枫
RK3568学习笔记笔记
若该文为原创文章,转载请注明原文出处。测试使用QT调用Opencv的API显示摄像头,板子为正点原子的RK3568,最终想实现的是在RK3568平台上使用Qt框架进行部署,利用NPU推理加速视频目标识别。此篇为测试功能代码为正点原子提供的代码,直接用来测试,在未看代码时一直不明白怎么添加opencv的库,后面明白了,只增加了下面的两行:CONFIG+=link_pkgconfigPKGCONFIG
- 图像处理全栈指南:从传统算法到深度学习,再到FPGA移植
阿牛的药铺
图像算法区图像处理算法深度学习
图像处理全栈指南:从传统算法到深度学习,再到FPGA移植一、引言:图像处理是光学类产品的“大脑”光学类产品(可见光摄像头、红外热成像、光谱仪)的核心价值,在于将光信号转化为可理解的图像信息。而图像处理算法,就是解读这些信息的“大脑”——从传统的边缘检测到深度学习的目标识别,从实时降噪到高维光谱分割,每一步都决定了产品的性能(如分辨率、帧率、功耗)。对于算法移植工程师(科研助理1)岗位而言,需要掌握
- 人形机器人指南(七)视觉
妫以明
机器人人形机器人机器视觉指南
七、机器视觉与人形机器人——空间认知的智能之眼机器视觉系统是人形机器人感知物理世界的核心感官通道,其重要性如同视觉之于人类。它不仅负责环境信息的采集,更是赋予机器人空间理解力、交互智能和操作精度的神经中枢。本章将深入解析目标识别、空间建图、场景理解、手眼协调及人际交互五大视觉能力的技术原理及其在人形平台上的独特实现挑战。7.1目标检测与识别:动态场景中的感知基石人形机器人的目标检测需在复杂动态环境
- 第3.3章 一文带你入门PCL点云库及在机器人SLAM中的代码实战
行知SLAM
机器人工程师带你入门SLAM人工智能c++算法机器人开发语言
目录一、PCL库:开启3D感知大门的钥匙二、PCL库基础入门2.1什么是PCL库2.2PCL源码头文件分类概览总结2.3安装PCL库2.4基础数据结构与概念三、PCL库在SLAM中的核心应用3.1点云获取与预处理3.2点云特征提取与描述3.3点云配准3.4点云分割与目标识别四、进阶技巧与优化策略4.1提高算法效率的方法4.2解决实际问题的经验4.3与其他技术的融合五、案例分析:PCL库实战应用六、
- Spark RDD 之 Partition
博弈史密斯
SparkRDD怎么理解RDD的粗粒度模式?对比细粒度模式SparkRDD的task数量是由什么决定的?一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度支持保存点(checkpoint)虽然RDD可以通过lineage实现faultrecove
- 智能喷洒机器人目标识别系统:基于NanoDet的目标检测与UI界面实现
YOLO实战营
机器人目标检测uiNanoDet计算机视觉目标跟踪深度学习
在现代农业生产中,自动化喷洒系统是实现精准农业的重要组成部分。智能喷洒机器人通过图像识别和自动控制技术,能够高效识别并精确喷洒农药、肥料等,提高农业生产效率,降低化学品使用量,减少环境污染。目标识别是智能喷洒机器人中至关重要的部分,它涉及到精准的作物和病虫害识别,确保喷洒操作的准确性。在本篇博客中,我们将构建一个基于NanoDet深度学习目标检测模型的智能喷洒机器人目标识别系统。我们将介绍如何使用
- 智界R7智驾功能和性能评价
TheWanderers
智能驾驶智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
- 纸板制造学习3·DOE实验(如正交试验)优化压力组合
xinzheng新政
制造学习
·DOE实验(如正交试验)优化压力组合DOE(DesignofExperiments,实验设计)是一种通过科学规划实验方案,系统分析多因素对结果影响的方法,正交试验是其核心工具之一。在纸板生产中,DOE可通过少量实验快速找到气缸压力、原纸克重等变量的最优组合,提升效率与质量。以下是简要科普:一、DOE的核心目标识别关键因素:确定哪些变量(如热板压力、原纸克重)对结果(如纸板厚度、粘合强度)影响最大
- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- 2025年最流行跑分最高的图片理解大模型调研报告
2025年最流行跑分最高的图片理解大模型调研报告引言当前,图片理解大模型正处于快速演进阶段,其技术发展呈现多维度深化与融合的特征。从技术演进方向来看,多模态融合已成为核心趋势之一,文本、图像、视频等不同模态的交互与协同能力显著提升。大型视觉-语言模型(LVLMs)作为人工智能领域的重要突破,标志着多模态理解与交互进入变革性发展阶段,尽管当前模型在各类任务中表现出色,但在细粒度视觉任务等基础能力层面
- Redis 安全加固:从密码保护到高级安全配置
Seal^_^
数据库专栏#数据库--Redisredis安全数据库Redis安全加固
Redis安全加固:从密码保护到高级安全配置一、Redis安全概述二、密码认证配置1.设置Redis密码临时设置(重启后失效)永久设置(修改配置文件)2.密码认证流程3.Python连接示例三、网络层安全加固1.绑定内网IP2.修改默认端口3.防火墙配置四、危险命令禁用1.禁用敏感命令2.命令禁用前后对比五、高级安全配置1.TLS加密传输2.客户端证书认证3.ACL细粒度权限控制(Redis6.0
- 中药细粒度图像分类
小lo想吃棒棒糖
分类数据挖掘人工智能
在细粒度图像分类(FGVC)领域,BilinearCNN(BCNN)模型因其能够捕捉图像中的局部特征交互而受到广泛关注。该模型通过双线性池化操作将两个不同CNN提取的特征进行外积运算,从而获得更加丰富的特征表示,这对于区分外观相似但属于不同子类别的物体尤其有效。然而,BCNN通常计算成本较高,限制了其在移动设备或资源受限环境下的应用。为了实现轻量化并保持高精度的细粒度分类,可以考虑将MobileN
- Spring Bean 生命周期 SmartLifecycle接口介绍和使用场景 和 Lifecycle对比
极光雨雨
#Spring全家springjava
在SpringBoot中,SmartLifecycle是org.springframework.context.Lifecycle接口的一个扩展接口,它提供了更细粒度的控制生命周期的方法。Spring容器管理Bean的生命周期时,可以通过实现SmartLifecycle接口来定义自定义的启动和关闭逻辑。一、使用前提需要在Spring容器启动完成后执行某些初始化操作。需要在应用关闭前做一些清理工作(
- 论文略读:ASurvey of Large Language Models for Graphs
UQI-LIUWJ
论文笔记语言模型人工智能自然语言处理
2024KDD归纳了四种主要的graph+大模型GNNsasPrefixLLMsasPrefixLLMs-GraphsIntegrationLLMs-Only1GNNsasPrefix1.1节点级Token化将图结构中的每个节点单独输入到LLM中使LLM能够深入理解细粒度的节点级结构信息,并准确辨别不同节点间的关联与差异最大限度地保留每个节点的特有结构特征1.2图级Token化、将graph综合成
- GaussDB 权限管理:从 RBAC 到精细化控制的技术实践
如清风一般
gaussdb
GaussDB权限管理:从RBAC到精细化控制的技术实践一、引言在分布式数据库环境中,权限管理是保障数据安全和合规性的核心环节。GaussDB(开源版及云服务版)提供了一套完整的权限管理体系,支持基于角色的访问控制(RBAC)、细粒度权限分配和动态审计等功能。本文将深入解析GaussDB的权限管理模型、操作方法及实战技巧。二、GaussDB权限管理模型核心对象与层级GaussDB的权限管理围绕以下
- 解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护
摘要本文以健康管理应用为例,展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制,实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码,演示鸿蒙系统如何平衡功能需求与隐私安全。场景描述想象一个健康管理应用需要实现以下功能:读取步数传感器数据(ohos.permission.ACTIVITY_MOTION)获取位置信息绘制运动轨迹(ohos.per
- 【Prometheus】cAdvisor工作原理介绍
码上淘金
prometheus
cAdvisor(ContainerAdvisor)是Google开源的容器监控工具,专注于实时采集和暴露容器级别的资源使用数据。其底层实现基于Linux内核的多项技术,结合高效的事件驱动架构,实现对容器资源的细粒度监控。以下从核心机制、数据采集原理和架构实现三方面详细解析:一、核心依赖技术cAdvisor的监控能力建立在Linux内核提供的底层机制之上:cgroups(控制组)资源隔离与统计:c
- 设计模式(十)
醇醛酸醚酮酯
设计模式设计模式
享元模式(FlyweightPattern)详解一、核心概念享元模式通过共享技术复用相同或相似的细粒度对象,以减少内存占用和提高性能。该模式将对象状态分为内部状态(可共享的不变部分)和外部状态(需外部传入的可变部分),通过共享内部状态降低对象数量。核心组件:抽象享元(Flyweight):定义共享对象的接口,声明处理外部状态的方法。具体享元(ConcreteFlyweight):实现抽象享元接口,
- C# 多线程(三)线程池
q__y__L
C#开发语言c#
目录1.通过TPL使用线程池2.不使用TPL进入线程池的办法异步委托3.线程池优化技术最小线程数的工作原理每当启动一个新线程时,系统都需要花费数百微秒来分配资源,例如创建独立的局部变量栈空间。默认情况下,每个线程还会占用约1MB内存。线程池通过共享和回收线程来消除这些开销,使得多线程技术可以应用于非常细粒度的场景而不会造成性能损失。这在利用多核处理器以"分而治之"方式并行执行计算密集型代码时尤为有
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- 提升自动驾驶导航能力:基于深度学习的场景理解技术
星辰和大海都需要门票
路径规划算法自动驾驶深度学习人工智能
EnhancingAutonomousVehicleNavigationUsingDeepLearning-BasedSceneUnderstanding提升自动驾驶导航能力:基于深度学习的场景理解技术摘要-为应对复杂环境下的自动驾驶导航,系统高度依赖场景理解的准确性。本研究提出一种基于深度学习的新方法,将目标识别、场景分割、运动预测与强化学习相结合以提升导航性能。该方法首先采用U-Net架构分解
- 细粒度IP定位参文27(HGNN):Identifying user geolocation(2022年)
[27]F.Zhou,T.Wang,T.Zhong,andG.Trajcevski,“Identifyingusergeolocationwithhierarchicalgraphneuralnetworksandexplainablefusion,”Inf.Fusion,vol.81,pp.1–13,2022.(用层次图、神经网络和可解释的融合来识别用户的地理定位)论文地址:https://do
- D-FINE使用pth权重批量推理可视化图片
悠悠海风
代码调试深度学习人工智能python目标检测计算机视觉
关于D-FINE相关的内容可参考下面这篇博客:论文解读:ICLR2025|D-FINE_d-fine:redefineregressiontaskindetrsasfine--CSDN博客文章浏览阅读949次,点赞18次,收藏28次。D-FINE是一款功能强大的实时物体检测器,它将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入了全局最优定位自蒸馏(GO-LSD),在不引入额
- 一站式 IT 资产管理:零信任产品的多维对比
scuter_yu
安全网络
在数字化转型的浪潮中,企业面临着日益复杂的网络安全挑战,零信任安全理念应运而生并逐渐成为保障企业信息安全的重要手段。腾讯iOA零信任产品、深信服零信任安全解决方案、奇安信零信任安全解决方案以及GoogleBeyondCorp零信任网络架构等产品在市场上各有千秋,尤其在一站式IT资产管理方面,它们展现了不同的特色与优势。以下是对每款产品在一站式IT资产管理方面的分点对比:腾讯iOA零信任产品细粒度统
- TinyWebserver学习(6)-线程监听函数eventListen()
THMOM91
c++
六、线程监听函数eventListen()一、相关知识总结1、setsockopt()函数setsockopt是用于设置套接字(socket)选项的系统调用,允许应用程序对套接字的行为进行更细粒度的控制。它通常用于配置网络通信的参数,例如超时、缓冲区大小、地址复用等。以下是详细的解析#include#includeintsetsockopt(intsockfd,intlevel,intoptnam
- D-FINE模型详解及代码复现
清风AI
目标跟踪人工智能计算机视觉深度学习机器学习python神经网络
研究背景在实时目标检测领域的快速发展背景下,D-FINE作为一项突破性的方法应运而生。它超越了现有模型如YOLOv10、YOLO11及RT-DETRv1/v2/v3,重新定义了边界框回归任务,显著提升了实时目标检测的性能上限。D-FINE通过创新的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)机制,为目标检测领域带来了新的突破,为未来的研究奠定了基础。创新优势D-FINE模型在创新方
- 什么是Sentinel? 以及优点
肘击鸣的百k路
sentinel
Sentinel是阿里巴巴开源的轻量级流量治理与系统保护组件,专注于微服务架构下的实时流量控制、熔断降级和系统稳定性保障。其核心目标是通过动态规则管理防止服务因高并发、突发流量或依赖故障导致雪崩崩溃。⚙️Sentinel的核心功能流量控制基于QPS(每秒请求数)或并发线程数限制资源访问,支持直接拒绝、匀速排队(漏桶算法)、慢启动(令牌桶算法)等策略。细粒度控制:可针对特定接口、方法甚至热点参数(如
- MySQL之全场景常用工具链
AA-代码批发V哥
MySQLmysql数据库运维
MySQL之全场景常用工具链一、基础连接与客户端工具1.1mysql命令行客户端1.2MySQLWorkbench:官方可视化1.3NavicatPremium二、管理与开发工具2.1phpMyAdmin:Web端管理首选2.2HeidiSQL:轻量Windows客户端三、性能优化工具3.1EXPLAIN:查询优化3.2SHOWPROFILE:细粒度性能分析3.3慢查询日志:捕获性能痛点四、备份与
- “自动化失败归因”测试集-Who&When
liliangcsdn
自动化人工智能语言模型
在MAS(Multi-Agent系统)中,Agent之间自主协作、信息链条长,异常常见而且诊断困难。Who&When就是测者MAS系统异常诊断的benchmark。Who&When的prompt问题来源于GAIAandAssistantBench,包含了127个LLMMulti-Agent系统中收集的异常日志,并经过系统和人工处理。Who&When样本配有如下所示的细粒度标注:“谁”(Who):哪
- AutoGen 终止控制双机制深度解析:InterventionHandler 与 TerminationCondition 的对比与实践
佑瞻
AutoGenAutoGen
在智能体系统开发过程中,终止控制机制的设计往往决定了系统的稳定性与安全性。当我们在AutoGen框架下构建复杂智能体应用时,常常会遇到两类终止需求:一类是针对具体对话或任务的细粒度终止控制,另一类是面向整个运行时环境的全局终止管理。AutoGen提供的InterventionHandler干预处理程序和TerminationCondition终止条件恰好对应这两种需求场景,但这两种机制的设计理念与
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不