- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- 论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
行然梦实
优化算法论文阅读算法数学建模
前言提醒:文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。内容由AI辅助生成,仅经笔者审核整理,请甄别食用。文章目录前言一些关于优化算法的缩写优化算法Ma,Haiping&Zhang,Yajing&Sun,Shengyi&Liu,Ting&S
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- Python, C ++开发全国研学基地查询与管理APP
Geeker-2025
pythonc++
以下是基于Python和C++开发全国研学基地查询与管理APP的技术方案,结合高性能数据处理、混合语言开发及教育行业合规性要求:---###**一、核心功能架构**```mermaidgraphTDA[用户端APP]-->B{API网关}C[管理端平台]-->BB-->D[Python业务微服务]D-->E[C++数据处理引擎]D-->F[时空数据库集群]E-->G[智能推荐系统]F-->H[可视
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- Claude 4 全新上线,科研和写作能力大幅提升!文献检索和综述更容易,实测好用!(附专业提示词)
智写AI
AI学术写作指南人工智能
在2025年5月22日,Claude正式发布了它的4系列模型:Opus4和Sonnet4七哥总结下这两款模型的特点,Sonnet4适合快速响应的任务,Opus4适合需要推理的复杂多步骤任务。两款模型都有20万token的上下文窗口。对科研人员、程序开发者来说,Claude这一代模型不仅性能强悍,还在多项核心能力上实现了突破式进阶。说说最新亮相的Claude4系列模型在多项核心能力上的三大进阶之处:
- 深入理解 Top-K 问题:高效的 nlogk 算法及 C++ 实现
在日常开发和算法面试中,Top-K问题是一类非常常见的场景。例如"找出数组中前K个最大的元素"、"统计热门搜索词"、"推荐系统中的热门商品"等,都可以归结为Top-K问题。本文将详细讲解如何用时间复杂度为O(nlogk)的高效算法解决这类问题,并通过C++代码实现具体方案。一、什么是Top-K问题?Top-K问题可以抽象为:从含有n个元素的集合中,找出其中最大(或最小)的k个元素。常见的应用场景包
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 双塔模型(Two-Tower Model)推荐系统实践
双塔模型双塔模型(Two-TowerModel)是一种常用的推荐系统或搜索排序模型架构,由两个独立的神经网络(即“双塔”)组成,分别处理用户和物品的特征,最后通过相似度计算(如点积、余弦相似度)得到匹配分数。Rust因其高性能和安全性,适合实现此类模型。双塔模型的定义双塔模型(Dual-TowerModel)是一种深度学习架构,由两个独立的神经网络塔(Tower)组成,分别处理不同的输入数据,最后
- 「数据采集与网络爬虫(使用Python工具)」【数据分析全栈攻略:爬虫+处理+可视化+报告】
-第103篇-Date:2025-06-01Author:郑龙浩/仟墨文章目录「据采集与网络爬虫」【使用工具:Python】一数据采集1数据采集综述(1)基本介绍(2)数据目标源(3)采集方式(4)数据形式2互联网数据采集(重点)(1)什么是网络爬虫?(2)常见的网络爬虫和爬虫采集器(3)爬虫的流程(4)反爬虫技术3数据采集基本流程二HTTP请求和响应(1)HTTP(HypertextTransf
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 基于Android studio的城市景区旅游导航与推荐系统
QQ242219979
androidstudio旅游android
随着时代的发展和进步,越来越多人选择在空闲的时间出去旅游,人们要前往陌生的城市旅游,就不可避免地会出现迷路,不知道景点等情况,基于此,旅游app变成了游客的热门选择,兼顾导航与热门景点推荐,方便游客查询路线的同时也能为游客推荐一些热门的旅游景点,让游客更加方便快捷的找到想去的地方,有一个更加舒适的旅游体验。苏州作为热门旅游城市,其中姑苏区经典密集,但是路线复杂,人流密集,游客来到这里,不知道该去哪
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- 浅谈生成式AI语言模型的现状与展望
摘要生成式人工智能语言模型作为当前人工智能领域最具突破性的技术之一,正在深刻改变着自然语言处理的技术范式和应用格局。本文从学术文献综述的角度,系统梳理了从Transformer架构到大语言模型的技术演进历程,深入分析了当前生成式AI语言模型的核心技术特征、应用现状以及面临的主要挑战,并展望了未来发展趋势。研究表明,生成式AI语言模型在参数规模扩展、多模态融合、推理能力提升等方面取得了显著进展,但仍
- (附源码)计算机毕业设计SSM健康饮食推荐系统
学姐计算机毕设程序
mybatisjavamysql
(附源码)计算机毕业设计SSM健康饮食推荐系统项目运行环境配置:Jdk1.8+Tomcat7.0+Mysql+HBuilderX(Webstorm也行)+Eclispe(IntelliJIDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:SSM+mybatis+Maven+Vue等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这
- 如何面试AI产品经理职位?
从美团AI产品经理岗位的面试题来看,该岗位要求技术深度、产品思维和伦理意识的高度融合。以下是系统分析及准备建议:一、AI产品经理核心职责技术桥梁:将业务需求转化为技术方案(如LLM优化、推荐系统设计)全链路管理:主导AI产品从需求分析、模型选型、效果验证到上线的全流程风险控制:识别并解决模型偏见、幻觉、数据安全等伦理风险性能优化:平衡算法效果与工程约束(如推理速度、资源消耗)价值量化:设计评估体系
- Python全站爬取与知识图谱构建实战:从数据采集到语义建模的全流程指南
Python爬虫项目
python知识图谱easyui信息可视化开发语言爬虫人工智能
引言随着信息爆炸时代的到来,如何系统化地获取并结构化网站上的海量信息,成为数据科学和人工智能领域的重要课题。知识图谱作为将结构化数据和语义联系可视化的强大工具,正广泛应用于搜索引擎、推荐系统、智能问答等领域。本文将系统讲解如何用Python实现对目标网站的全站爬取,并结合自然语言处理技术,自动抽取实体与关系,最终构建成知识图谱。全流程涵盖爬取策略、信息抽取、知识融合及可视化,配合丰富的代码示例,助
- 使用 QLExpress 构建灵活可扩展的业务规则引擎
目录一、什么是QLExpress?二、推荐系统中的规则脚本应用1场景描述2推荐规则脚本(QLExpress)3系统实现4执行结果5推荐系统应用建议三、风控系统中的规则判定1场景描述2风控规则脚本(QLExpress)3系统实现4执行结果5风控系统应用建议四、设计建议在大型系统中,规则引擎的存在使业务逻辑从代码中解耦出来,使得系统具备更高的灵活性与可维护性。阿里巴巴开源的QLExpress正是一款轻
- 【深化复盘】英语学习活动观内涵和有效教学框架解读
心阳心语
现在还依稀记得9月中旬自己作为一名新进学员小白满怀忐忑守候在电脑旁,参与聆听主题大课第一讲时的情形。由于自己2022版课标还没有进行系统的研读,只是停留在浅层的略有所知阶段,因此,对于课程第一讲的讲授内容,心中只是觉得高大上,自己则是囫囵吞枣式的牵强理解。在跟着课程组进行两版课标的啃读与系统学习小半年后,现在再次阅读彭文娟老师归纳整理提炼而撰写的课程综述。感觉综述中的主要内容及文字灵动可见,不再陌
- 温湿度传感器AHT25
温湿度传感器•完全标定•数字输出,I2C接口•优异的长期稳定性•响应迅速、抗干扰能力强•宽电压支持2.2-5.5VDC产品综述AHT25温湿度传感器配有一个全新设计的ASIC专用芯片、经过改进的MEMS半导体电容式湿度传感元件和一个标准的温度传感元件,其性能达到行业先进水平。经过改进的新一代温湿度传感器AHT25在恶劣环境下的性能更稳定,并且还能在较大的测量范围内保持良好的精度。AHT25使用了标
- 基于定制开发开源AI智能名片S2B2C商城小程序源码的搜索框个性化推荐机制研究
摘要:本文聚焦于定制开发开源AI智能名片S2B2C商城小程序源码场景下的搜索框个性化推荐机制。通过分析搜索框作为信息流槽位的产品形态特性,结合开源AI大模型与S2B2C模式的技术融合优势,提出基于用户强兴趣/即时兴趣的动态推荐策略。研究揭示了定制化开发在破解传统搜索框静态局限中的关键作用,并通过实证案例验证了该机制对提升用户转化率与平台GMV的显著效果,为新零售场景下的智能推荐系统设计提供了理论依
- 【论文蒸馏】Recent Advances in Speech Language Models: A Survey
Greener_Pat
论文蒸馏语言模型人工智能AudioLM
AbstractLLM蓬勃发展,但从交互的自然性上看语音大模型(SpeechLM)有巨大的发展空间。直接的方法是ASR(语音转文字)+LLM+TTS(文字转语音),但是这样有其固有的限制,而端到端的SpeechLM表现更好,本文及其方法论做了一个概览的综述1.Introduction大语言模型提供了强大的AI基础支架,在其它领域有着广泛应用。但交互上不自然,所以需要声学大模型。一种直接的实现方式是
- 具身智能的视觉-语言导航综述
24年2月来自曲阜师范、华东师大和哈工大的论文“Vision-LanguageNavigationwithEmbodiedIntelligence:ASurvey”。作为人工智能领域的长期愿景,具身智能的核心目标是提升智体与环境的感知、理解和交互能力。视觉-语言导航(VLN)作为实现具身智能的重要研究路径,致力于探索智体如何利用自然语言与人进行有效沟通,接收并理解指令,并最终依靠视觉信息实现精准导
- 基于小样本学习的图像分类综述
cdyyyyyyy
学习分类机器学习
目录引言基本概念小样本学习方法分类1、数据增强2、迁移学习3、元学习小样本学习主流方法1、基于度量的小样本学习2、基于Pretraining+FineTuning的方法3、基于元学习的小样本学习总结引言因为课程设计要求,所以进行了关于小样本学习的调研。目前小样本学习还是一个比较热门的研究,很多关于小样本学习的论文也陆续发表。本文只是一个概述,具体方法研究还有待深入。基本概念小样本学习(FSL:Fe
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C