- Pandas:数据科学的超级瑞士军刀
科技林总
DeepSeek学AI人工智能
**——从零基础到高效分析的进化指南**###**一、Pandas诞生:数据革命的救世主****2010年前的数据分析噩梦**:```python#传统Python处理表格数据data=[]forrowincsv_file:ifrow[3]>100androw[2]=="China":data.append(float(row[5])#代码冗长易错!```**核心痛点**:-Excel处理百万行崩
- 使用Python操作Excel,删重复数据及keep参数用法并保存的例子
白帽黑客艾登
pythonexcel开发语言Python编程Python学习技能分享
01Ex按列标题删重复的数据解析:我们使用了pandas库读取Excel文件,并使用drop_duplicates()函数删除重复数据。其中,subset参数指定了删除重复数据的列(列名),keep参数指定了保留哪个重复记录(默认为第一个记录)。inplace=True参数表示在原始数据上进行操作。最后,我们使用to_excel()函数将处理后的数据,保存到一个新的Excel文件中,其中index
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 实践篇:构建基于LLM与本地Pandas的混合式数据分析引擎
超人阿亚
pandas数据分析数据挖掘
公众号:dify实验室基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。在上一篇《思路探索:当大型语言模型遇见数据分析的现实挑战》中,我们阐述了团队确立的技术路线:利用大型语言模型(LLM)作为自然语言到代码的“翻译器”,并结合PythonPandas库作为后端的高性能“计算核心”。本文将从工程实践的角度,详细
- python小工具合集
Aronup
pythonexcel开发语言
小工具合集1.python切分excel2.python检查excel输出每列最大长度[目录下所有文件or目录下每个文件]1.python切分excel"""@Project:pythonProject@File:splitFile.py@IDE:PyCharm@Author:alice@Date:2025/3/2113:48"""importpandasaspdimportosdefsplit_
- pandas.to_sql mysql_pandas to_sql
weixin_39929595
pandas.to_sqlmysql
实例:importpymysqlimportpandasaspdimportnumpyasnpfromsqlalchemyimportcreate_enginedf=pd.DataFrame([[1,"Bob",0],[2,"Kim",1]],columns=["id","name","sex"])dfidnamesex01Bob012Kim1fromsqlalchemyimportcreate_
- pandas 读取sqlserver_Python中pandas函数操作数据库
将pandas的DataFrame数据写入MySQL+sqlalchemypython强大的处理数据的能力很大一部分来自Pandas,pandas不仅限于读取本地的离线文件,也可以在线读取数据库的数据,处理后再写回数据库中。pandas主要是以sqlalchemy方式与数据库建立链接,支持Mysql、postgresql、Oracle、MSSQLServer、SQLite等主流数据库。一:创建链接
- DataFrame(数据框)
追逐此刻
SQLsql
一种二维表格型数据结构,类似于电子表格(如Excel)或SQL表,由行(记录)和列(字段)组成。它是数据分析、机器学习和科学计算中最常用的数据结构之一,尤其在Python的Pandas库中被广泛使用。1.DataFrame的核心特点特点说明二维结构类似表格,有行(记录)和列(字段)。列名(ColumnNames)每列有一个名称(如name,age,salary)。行索引(Index)每行有一个索引
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 【Python高阶开发】2. Dask分布式加速实战:TB级生产日志分析效率提升指南
摘要:随着工业4.0的深入推进,工业生产日志数据量呈指数级增长,某汽车制造厂日均产生2TB生产日志,传统单机Pandas处理面临内存不足、耗时过长、资源利用率低三大瓶颈。本文基于Dask分布式计算框架,构建工业级日志分析解决方案,通过“集群部署-高效加载-数据处理-性能优化”四步法,实现日志分析效率5倍提升。详细阐述Dask核心原理(任务调度、延迟计算、数据分区),对比单机与分布式架构差异,提供从
- 如何在 Python 中高效处理大数据:Pandas 的实战技巧
程序员威哥
python大数据pandas
随着数据量的不断增大,Python成为数据科学和数据分析领域最受欢迎的编程语言之一。Pandas,作为Python中处理数据的强大库,以其简洁易用和强大的功能,成为数据分析的首选工具。然而,随着数据量的急剧增长,如何高效地处理和分析大数据成为了一个关键问题。本文将深入解析如何利用Pandas高效处理大数据,探索一些实用的技巧,帮助你提升数据处理性能和优化内存使用,让你能够在大数据分析中游刃有余。1
- python学习DAY4打卡
星仔编程
python学习打卡学习
DAY4缺失值的处理题目:初识pandas库与缺失数据的补全pandas是Python里一个强大且广泛使用的开源数据分析与处理库按照示例代码的要求,去尝试补全信贷数据集中的数值型缺失值打开数据(csv文件、excel文件)查看数据(尺寸信息、查看列名等方法)查看空值众数、中位数填补空值利用循环补全所有列的空值完成后在py文件中独立完成一遍,并且利用debugger工具来查看属性(不借助函数显式查看
- python学习Day5打卡
WYH49
学习
day5离散特征的独热编码先按照示例代码过一遍,然后完成下列题目现在在py文件中一次性处理data数据中所有的连续变量和离散变量1.读取data数据importpandasaspddata=pd.read_csv(r"C:\Users\LENOVO\Desktop\daim\data.csv")fordesribe_featuresindata.columns:ifdata[desribe_fea
- python学习DAY22打卡
星仔编程
python学习打卡学习
作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码kaggle泰坦尼克号人员生还预测importwarningswarnings.filterwarnings("ignore")#忽略警告信息#数据处理清洗包importpandasaspdimportnumpyasnpimportrandomasrnd#可视化包importseabornassnsimportmatp
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- pandas库 DataFrame的常见操作
目录一.Pandas库的核心特点与应用场景1.表格数据处理2.与NumPy的区别3.数据转换二.Pandas与OpenPyXl的对比三.DataFrame与Series数据类型四.DataFrame常用操作排序:df.sort_values(by='列名',ascending=False)按指定列降序排序,整行数据同步调整,当参数值为ture时则为升序排序或默认升序排序数据替换:df['列名'].
- 数据分析利器:Pandas数据处理实战指南
程序员Bears
Python全栈成长笔记数据分析pandas数据挖掘
一、Pandas简介:数据分析的瑞士军刀Pandas是Python数据分析的核心库,它提供了两种主要数据结构:Series:一维带标签数组DataFrame:二维表格型数据结构(类似Excel表格)importpandasaspd#创建示例DataFramedata={'姓名':['张三','李四','王五'],'年龄':[25,30,28],'城市':['北京','上海','广州']}df=pd
- Python 玩转 Excel:四大神器横向评测与实战指南
在数据驱动的时代,每天有超过3亿人使用Excel处理数据,但面对复杂报表、批量处理等场景时,传统操作往往力不从心。Python作为数据处理的瑞士军刀,与Excel的深度整合能力正在掀起一场办公效率革命。本文将深入剖析四大主流Python-Excel工具的技术特性,带您解锁自动化办公的终极形态。一、四大核心工具特性速览1.Pandas(数据分析之王)作为NumFOCUS基金会支持的项目,Pandas
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- pandas 的数据类型简单介绍-Series 与 DataFrame
江南野栀子
#Python数据分析pythonpandas数据分析
目录1.Series1.1Series定义1.2Series构造2.DataFrame2.1DataFrame定义2.2DataFrame构造2.2.1使用pandas.DataFrame函数2.2.2使用pandas.DataFrame.from_dict函数2.2.3使用pandas.DataFrame.from_records函数2.2.4从csv、Excel、txt、mysql等等处获得数
- Python 数据分析课程学习总结:从理论到实践的进阶之路
作为一名大学生,在2024-2025学年下学期接触《Python数据分析》这门课程时,我对数据分析的认知还停留在“用Excel做简单统计”的层面。但经过一学期的学习,我不仅掌握了Python数据分析的核心工具,更培养了用数据思维解决问题的能力。以下是我从知识吸收、实践打磨到思维重塑的完整学习总结。一、工具学习:从陌生到熟悉的跨越(一)Pandas:数据处理的得力助手最开始接触Pandas的时候,感
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 主页-评论用户时间占比环形饼状图实现
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解主页-评论用户时间占比环形饼状图实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更新中.
- Pandas 处理缺失数据
文章目录Pandas处理缺失数据缺失数据约定的权衡Pandas中的缺失数据None作为哨兵值NaN:缺失的数值数据Pandas中的NaN和NonePandas可空数据类型对缺失值的操作检测空值删除空值填充空值总结Pandas处理缺失数据许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的。尤其是,许多有趣的数据集都会存在一定程度的数据缺失。更复杂的是,不同的数据来源可能
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分