Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
好久没有写过博客了,最近写的题比较少太水了,还要打蓝桥杯(贪心杯)和天梯赛
天梯赛擦线省三,险之又险,说到底还是自己太菜,蓝桥就拿了个国赛的名额。
好吧,来说说这道题,相较于之前maxsum 的线性dp这个骚了点 划分了区间。类似与背包问题
dp方程的第一个元素的意思是(j-1个元素)分划为i组,最后一组加上num[j]的值 第二个元素的意思是(j-1个元素)分划为i-1组,最后一个元素独立成为i组
max数组是用来储存上一次分组最优的情况
#include
#include
#include
using namespace std;
const int inf=0x7fffffff;
const int maxn=1e6+100;
int num[maxn];
int Max[maxn];
int dp[maxn];
int main()
{
int m,n;
while(~scanf("%d%d",&m,&n))
{
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
memset(Max,0,sizeof(Max));
memset(dp,0,sizeof(dp));
int maxx;
for(int i=1;i<=m;i++)
{
maxx=-inf;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-1]+num[j],Max[j-1]+num[j]);
Max[j-1]= maxx;
maxx=max(maxx,dp[j]);
}
}
printf("%d\n",maxx);
}
}