- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- INVALID_COLUMN_NAME _AS_PATH
sparksql异常[INVALID_COLUMN_NAME_AS_PATH]ThedatasourceHiveFileFormatcannotsavethecolumnmin(birth_date)becauseitsnamecontainssomecharactersthatarenotallowedinfilepaths.Piease,useanallastorenameidemosqlSE
- Spark大数据处理讲课笔记4.8 Spark SQL典型案例
酒城译痴无心剑
#Spark基础学习笔记(1)spark笔记sql
文章目录零、本讲学习目标一、使用SparkSQL实现词频统计(一)提出任务(二)实现任务1、准备数据文件2、创建Maven项目3、修改源程序目录4、添加依赖和设置源程序目录5、创建日志属性文件6、创建HDFS配置文件7、创建词频统计单例对象8、启动程序,查看结果9、词频统计数据转化流程图二、使用SparkSQL计算总分与平均分(一)提出任务(二)完成任务1、准备数据文件2、新建Maven项目3、修
- 【Spark征服之路-3.7-Spark-SQL核心编程(六)】
qq_46394486
sparksqlajax
数据加载与保存:通用方式:SparkSQL提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL默认读取和保存的文件格式为parquet加载数据:spark.read.load是加载数据的通用方法。如果读取不同格式的数据,可以对不同的数据格式进行设定。spark.read.format("…")[.option("…")].
- Spark从入门到熟悉(篇三)
小新学习屋
数据分析spark大数据分布式
本文介绍Spark的DataFrame、SparkSQL,并进行SparkSQL实战,加强对编程的理解,实现快速入手知识脉络包含如下7部分内容:RDD和DataFrame、SparkSQL的对比创建DataFrameDataFrame保存成文件DataFrame的API交互DataFrame的SQL交互SparkSQL实战参考资料RDD和DataFrame、SparkSQL的对比RDD对比Data
- 【SequoiaDB】4 巨杉数据库SequoiaDB整体架构
Alen_Liu_SZ
巨杉数据库SequoiaDB架构编目节点协调节点数据节点巨杉数据库
1整体架构SequoiaDB巨杉数据库作为分布式数据库,由数据库存储引擎与数据库实例两大模块组成。其中,数据库存储引擎模块是数据存储的核心,负责提供整个数据库的读写服务、数据的高可用与容灾、ACID与发你不是事务等全部核心数据服务能力。数据库实例模块则作为协议与语法的适配层,用户可根据需要创建包括MySQL、PostgreSQL与SparkSQL在内的结构化数据实例;支持JSON语法的MongoD
- Spark教程3:SparkSQL最全介绍
Cachel wood
大数据开发spark大数据分布式计算机网络AHP需求分析
文章目录SparkSQL最全介绍一、SparkSQL概述二、SparkSession:入口点三、DataFrame基础操作四、SQL查询五、SparkSQL函数六、与Hive集成七、数据源操作八、DataFrame与RDD互转九、高级特性十、性能优化十一、Catalyst优化器十二、SparkSQL应用场景十三、常见问题与解决方法SparkSQL最全介绍一、SparkSQL概述SparkSQL是A
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- 史上最全Hive面试题(10w字完整版)
zh_19995
hive
1、下述SQL在Hive、SparkSql两种引擎中,执行流程分别是什么,区别是什么HiveonMapreducehive的特性:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapR
- spark sql解析过程详解
Chrollo
spark源码分析大数据sparkhadoop
sparksql解析sparksql解析过程这里直接引用论文SparkSQL:RelationalDataProcessinginSpark中的流程图,整体流程非常的清晰。下面将按顺序进去讲解。从Analysis这个阶段开始,主要流程都是在QueryExecution类中进行处理的。//Analysis阶段lazyvalanalyzed:LogicalPlan=executePhase(Query
- 第66课:SparkSQL下Parquet中PushDown的实现学习笔记
梦飞天
SparkSparkSQLPushDown
第66课:SparkSQL下Parquet中PushDown的实现学习笔记本期内容:1SparkSQL下的PushDown的价值2SparkSQL下的Parquet的PuahDown实现Hive中也有PushDown。PushDown可以极大减少数据输入,极大的提高处理效率。SparkSQL实现了PushDown,在Parquet文件中实现PushDown具有很重要的意义。PushDown是一种S
- Spark(四) SQL
小雨光
大数据spark
一、简介SparkSQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式SQL查询引擎的作用。之前Hive是将hql转换成MapReduce然后放在集群上执行,简化了编写MapReduce的复杂性,但是由于MapReduce执行的效率比较慢,所以产生了SparkSQL,它是将SQL转换成RDD,然后提交到集群执行,效率就会变快。二、
- spark java dataframe_Spark DataFrame简介(一)
克勒kk
sparkjavadataframe
1.DataFrame本片将介绍SparkRDD的限制以及DataFrame(DF)如何克服这些限制,从如何创建DataFrame,到DF的各种特性,以及如何优化执行计划。最后还会介绍DF有哪些限制。2.什么是SparkSQLDataFrame?从Spark1.3.0版本开始,DF开始被定义为指定到列的数据集(Dataset)。DFS类似于关系型数据库中的表或者像R/Python中的datafra
- 征服Spark as a Service
wangruoze
SparkSpark课程Spark培训Spark企业内训Spark讲师
Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台,基于RDD,Spark成功的构建起了一体化、多元化的大数据处理体系,在“OneStacktorulethemall”思想的引领下,Spark成功的使用SparkSQL、SparkStreaming、MLLib、GraphX近乎完美的解决了大数据中BatchProcessing、StreamingProcessing、Ad-hocQu
- 一天征服Spark!
wangruoze
SparkSpark课程Spark培训Spark企业内训Spark讲师
Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台,基于RDD,Spark成功的构建起了一体化、多元化的大数据处理体系,在“OneStacktorulethemall”思想的引领下,Spark成功的使用SparkSQL、SparkStreaming、MLLib、GraphX近乎完美的解决了大数据中BatchProcessing、StreamingProcessing、Ad-hocQu
- Spark SQL DataFrame 算子
猫猫姐
Spark实战sparksql大数据
SparkSQLDataFrame算子DataFrame与DatasetAPI提供了简单的、统一的并且更富表达力的API,简言之,与RDD与算子的组合相比,DataFrame与DatasetAPI更高级。DataFrame不仅可以使用SQL进行查询,其自身也具有灵活的API可以对数据进行查询,与RDDAPI相比,DataFrameAPI包含了更多的应用语义,所谓应用语义,就是能让计算框架知道你的目
- SparkSQL 优化实操
社恐码农
sparksql
一、基础优化配置1.资源配置优化#提交Spark作业时的资源配置示例spark-submit\--masteryarn\--executor-memory8G\--executor-cores4\--num-executors10\--confspark.sql.shuffle.partitions=200\your_spark_app.py参数说明:executor-memory:每个Execu
- JOIN使用的注意事项
对许
#Hive#Sparksparksqlhivesql
JOIN的使用要求在SparkSQL/HQL中,使用JOIN进行表关联时,需要注意以下要求:空值处理,多个表进行JOIN取值,在非INNERJOIN的情况下大多会取到NULL空值,对这些空值在必要情况下需要进行空值处理,一般使用COALESCE进行转换确认关联字段是否唯一对于字符型关联字段,如果无法保障不存在前后空格,最好进行TRIM处理后再关联关联条件关键字ON与JOIN关键字右对齐,AND进行
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- 4.2.5 Spark SQL 分区自动推断
酒城译痴无心剑
Spark3.x基础学习笔记SparkSQL自动分区推断
在本节实战中,我们学习了SparkSQL的分区自动推断功能,这是一种提升查询性能的有效手段。通过创建具有不同分区的目录结构,并在这些目录中放置JSON文件,我们模拟了一个分区表的环境。使用SparkSQL读取这些数据时,Spark能够自动识别分区结构,并将分区目录转化为DataFrame的分区字段。这一过程不仅展示了分区自动推断的便捷性,还说明了如何通过配置来控制分区列的数据类型推断。通过实际操作
- Spark SQL ---一般有用
okbin1991
sparksql大数据hive分布式
SparkSQLandDataFrame1.课程目标1.1.掌握SparkSQL的原理1.2.掌握DataFrame数据结构和使用方式1.3.熟练使用SparkSQL完成计算任务2.SparkSQL2.1.SparkSQL概述2.1.1.什么是SparkSQLSparkSQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。2.
- 4.8.2 利用Spark SQL计算总分与平均分
酒城译痴无心剑
Spark3.x基础学习笔记SparkSQL成绩统计
在本次实战中,我们的目标是利用SparkSQL计算学生的总分与平均分。首先,我们准备了包含学生成绩的数据文件,并将其上传至HDFS。接着,通过Spark的交互式编程环境,我们读取了成绩文件并将其转换为结构化的DataFrame。然后,我们创建了一个临时视图,并通过SQL查询计算了每个学生的总分和平均分。此外,我们还通过创建一个Spark项目来实现相同的功能。在项目中,我们定义了Maven依赖,配置
- Spark SQL进阶:解锁大数据处理的新姿势
£菜鸟也有梦
大数据基础大数据sparksqlhadoophive
目录一、SparkSQL,为何进阶?二、进阶特性深剖析2.1窗口函数:数据洞察的新视角2.2高级聚合:挖掘数据深度价值2.3自定义函数(UDF和UDTF):拓展功能边界三、性能优化实战3.1数据分区与缓存策略3.2解决数据倾斜问题3.3合理配置Spark参数四、实际项目案例4.1项目背景与数据介绍4.2SparkSQL进阶应用4.3优化过程与效果展示五、总结与展望一、SparkSQL,为何进阶?在
- Spark,连接MySQL数据库,添加数据,读取数据
Eternity......
spark大数据
以下是使用Spark/SparkSQL连接MySQL数据库、添加数据和读取数据的完整示例(需提前准备MySQL驱动包):一、环境准备1.下载MySQL驱动-下载mysql-connector-java-8.0.33.jar(或对应版本),放入Spark的jars目录,或提交任务时用--jars指定路径。2.启动SparkSessionscalaimportorg.apache.spark.sql.
- Spark入门秘籍
£菜鸟也有梦
大数据基础spark大数据分布式
目录一、Spark是什么?1.1内存计算:速度的飞跃1.2多语言支持:开发者的福音1.3丰富组件:一站式大数据处理平台二、Spark能做什么?2.1电商行业:洞察用户,精准营销2.2金融行业:防范风险,智慧决策2.3科研领域:加速研究,探索未知三、Spark核心组件揭秘3.1SparkCore3.2SparkSQL3.3SparkStreaming3.4SparkMLlib3.5SparkGrap
- Spark大数据分析案例(pycharm)
qrh_yogurt
spark数据分析pycharm
所需文件(将文件放在路径下,自己记住后面要用):通过百度网盘分享的文件:beauty_p....csv等4个文件链接:https://pan.baidu.com/s/1pBAus1yRgefveOc7NXRD-g?pwd=22dj提取码:22dj复制这段内容打开「百度网盘APP即可获取」工具:Spark下安装的pycharm5.202.窗口操作(SparkSQL)在处理数据时,经常会遇到数据的分类
- SparkSQL数据提取和保存
古拉拉明亮之神
大数据spark
在前面我们学习了RDD的算子还有分区器,今天我们来一起完成一个大一点的案例,通过案例来巩固学习内容。下面来做一个综合案例:读入csv文件中的数据,并做简单的数据筛选,然后写入数据到数据库。准备工作:建立一个.csv文件,然后添加基本数据。11,name,age12,xiaoming,2413,小花,19importorg.apache.spark.sql.SparkSessionimportjav
- Spark SQL 之 Analyzer
zhixingheyi_tian
sparksparksql大数据
SparkSQL之Analyzer//SpecialcaseforProjectasitsupportslateralcolumnalias.casep:Project=>valresolvedNoOuter=p.projectList.map(resolveExpressionByPlanChildren(_,p
- SparkSQL基本操作
Eternity......
spark大数据
以下是SparkSQL的基本操作总结,涵盖数据读取、转换、查询、写入等核心功能:一、初始化SparkSessionscalaimportorg.apache.spark.sql.SparkSessionvalspark=SparkSession.builder().appName("SparkSQLDemo").master("local[*]")//本地模式(集群用`spark://host:p
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>