- IK分词
初心myp
实现简单的分词功能,智能化分词添加依赖配置:4.10.4org.apache.lucenelucene-core${lucene.version}org.apache.lucenelucene-analyzers-common${lucene.version}org.apache.lucenelucene-queryparser${lucene.version}org.apache.lucenel
- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- 包含日志获取webshell
陈望_ning
日志文件关闭:Apache目录下的httpd.conf文件#ErrorLog"logs/error.log"#CustomLog"logs/access.log"common加#号为注释不产生日志文件如果去掉#将会在Apache/logs/目录下产生日志文件linux:access_logerror_logwindows:access.logerror.logaccess_log每一行记录了一次网
- 面试必考题:Android Binder 机制详解
大模型大数据攻城狮
androidbinder面试reactnativekotlindalvikretrofit
目录第一章:Binder的基本概念什么是Binder?多角度解读Binder第二章:Binder的工作机制Binder的整体流程服务注册:从零到有的第一步服务查询:找到目标的“地图”服务调用:请求与响应的旅程Binder驱动的幕后功劳为什么Binder这么快?第三章:Binder在系统架构中的角色Activity:界面背后的通信枢纽Binder的角色实例分析Service:后台任务的跨进程支柱Bi
- mac os 10.9 mysql_MAC OSX 10.9 apache php mysql 环境配置
AY05
macos10.9mysql
#终端内运行sudoapachectlstart#启动Apachesudoapachectlrestart#重启Apachesudoapachectlstop#停止Apache#配置Apachesudovi/private/etc/apache2/httpd.conf#将里面的这一行去掉前面的##LoadModulephp5_modulelibexec/apache2/libphp5.so#配置P
- 《万历十五年》第二章《首辅申时行》
维C多
#海底两万里#【伙伴共读第172天】今晚读完黄仁宇的《万历十五年》第二章《首辅申时行》。张居正有志改变文官机构的作风,但他对文官集团中最孚众望的人物不加尊敬,得罪了相互之间有千丝万缕关系的文人,就是得罪了全国的读书人。而且他利用自己的权力让御史和监察官成为自己个人的特务警察,埋下了太多的恐惧和怨恨,以至死后不得善终。作为张居正的后任,申时行看到了张的错误,他明白身为首辅,只能和文官合作,按照他们的
- 搜索引擎技术选型
dusty_giser
近期,业主对POI检索提出了一些想法,针对之前简单的WordSegment分词和模糊匹配搜索需要进行一些更为符合业主需求的调整。于是这几天对搜索引擎进行了一些技术选型;一、ApacheLucene Lucene是一个开源的高性能、可扩展的全文检索引擎工具包,但不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎。所以它是一套信息检索工具包,可以说是当今最先进
- Ubuntu lamp
会飞的灰大狼
linuxubuntu
Ubuntulamp前言在Ubuntu安装lamp架构我们了解到lamp是完整的架构我们前面了解到了集合了Linux系统apacheMySQL和PHP语言的完整架构我们前面说了Centos7中编译安装lamp那么我们去说一下在Ubuntu中安装安装apache2apt直接安装apache2apt-yinstallapache2启动apache2systemctlstartapache2#测
- 万字解析:从 C 语言到初阶数据结构
Aurora-silas
c语言数据结构开发语言
目录万字解析:从C语言到初阶数据结构前言第一章:C语言初识与环境搭建C语言的历史与影响开发工具介绍第一个程序HelloWorld第二章:变量、数据类型与运算符基本数据类型常量与变量命名规范运算符与表达式趣味小练习:BMI计算器第三章:输入输出与格式化printf输出格式详解scanf输入用法与常见问题小项目:自我介绍程序第四章:流程控制if/else条件判断switch语句循环结构小练习:乘法口诀
- ROS2编写一个简单的插件
CrimsonEmber
ROS笔记ROS2笔记学习
1.createabaseclasspackageros2pkgcreate--build-typeament_cmake--licenseApache-2.0--dependenciespluginlib--node-namearea_nodepolygon_base编辑ros2_ws/src/polygon_base/include/polygon_base/regular_polygon.h
- 第二阶段-第二章—8天Python从入门到精通【itheima】-137节(Python操作MySQL的数据插入)
Patrick_kafka
mysql数据库sqlpython数据分析大数据开发语言
目录137节——Python操作MySQL的数据插入1.学习目标2.commit提交3.commit手动确认的执行代码4.commit自动确认:添加在conn的类对象中一个参数autocommit=True5.小节总结6.为什么要用Python操作MySQL?一、从“手动记账”到“自动化账本”:理解技术演进的本质1.SQL的“强项”与“短板”2.Python的“赋能”作用二、Python+PyMy
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- 面向现代数据湖仓的开放表格式对比分析:Iceberg、Hudi、Delta Lake与Paimon
piekill
大数据平台大数据sparkflinkbigdata数据仓库
文章目录第一章数据湖的演进:从存储到事务型平台1.1前湖仓时代:ApacheHive的局限性1.2湖仓一体的范式转移第二章架构深度剖析2.1ApacheIceberg:以元数据为中心的设计2.2ApacheHudi:流式优先、时间轴驱动的架构2.3DeltaLake:以事务日志为唯一真相源2.4ApachePaimon:面向实时湖仓的LSM树架构第三章核心能力对比分析3.1事务性与并发控制3.2数
- 如何在 Apache Ignite 中创建和使用自定义 SQL 函数(Custom SQL Functions)
lang20150928
其他apacheIgnite
这段内容讲的是如何在ApacheIgnite中创建和使用自定义SQL函数(CustomSQLFunctions)。我们可以分步骤来理解它的含义和用法。一、什么是CustomSQLFunction?ApacheIgnite的SQL引擎支持标准SQL函数(如COUNT、SUM、AVG等),但有时这些内置函数无法满足业务需求。这时,你可以通过编写Java代码,创建自己的SQL函数,并在SQL查询中使用它
- 一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥密
落霞归雁
AI编程教育电商微信开放平台rabbitmq中间件
一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥秘在当今数字化时代,消息队列(MessageQueue,简称MQ)已经成为分布式系统中不可或缺的组件,而ApacheKafka作为其中的佼佼者,以其卓越的性能和广泛的应用场景脱颖而出。今天,就让我们用一句话读懂Kafka,并通过5W1H(What、Why、Who、When、Where、How)的方式,深入剖析它的核心价值与技术魅力。一句话读懂
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 赋能未来数学课堂——基于Qwen3、LangChain与Agent架构的个性化教辅系统研究
微学AI
langchain架构
文章目录摘要引言:技术融合催生的教育新范式第一章:Qwen3+LangChain+Agent架构的核心能力与优势1.1Qwen3模型:专为复杂推理打造的“智能大脑”1.2LangChain框架:构建智能体的“灵活骨架”1.3Agent智能体:自主解决问题的“执行中枢”1.4部署与成本优势第二章:在数学教育中解决的关键问题2.1从“答案”到“过程”:深度解析与分步式辅导2.2千人千面:实现高度个性化
- 时序数据库IoTDB的优势场景分析
时序数据说
时序数据库iotdb数据库物联网大数据
在当今数据爆炸的时代,物联网(IoT)设备产生的时序数据呈指数级增长。面对海量、高频的时序数据处理需求,传统关系型数据库显得力不从心。ApacheIoTDB(物联网数据库)作为一款专为物联网场景设计的时序数据库,凭借其独特架构在多个领域展现出显著优势。本文将深入探讨IoTDB最具竞争力的应用场景,帮助技术选型者做出明智决策。一、工业物联网(IIoT)场景工业物联网是IoTDB最能发挥其价值的领域之
- SpringCloud seata全局事务
frt6668
SpringCloudSpringbootspringcloudspringboot后端
项目https://github.com/apache/incubator-seatadocker拉取启动server$dockerrun--nameseata-server-p8091:8091apache/seata-server:2.1.0seata注册到nacoscom.alibaba.cloudspring-cloud-starter-alibaba-seata2023.0.3.3在所有
- 黑暗时代 第二章 这又是哪里
苍如雪
王进慢慢扶着藏书阁通往地下一层的楼梯,楼梯腐朽的气味充斥着他的鼻腔,与此同时,他敏锐的察觉到,这座藏书阁肯定不是阴鸦王建造的,他的历史一定会比靖云之战更加的悠久,自下而上望去,藏书阁虽然破败,但是依然可以联想到它昔日的辉煌。推开地下一层的门,仿佛进入了另一个世界,外面看去,藏书阁虽然破败辉煌,但是现在看过去,地下的藏书阁却好像一眼望不到边际,更令人惊讶的是见不到一次灰尘。那个男人一定经常来这里清扫
- Flink Checkpoint 状态后端详解:类型、特性对比及场景化选型指南
ApacheFlink提供了多种状态后端以支持Checkpoint机制下的状态持久化,确保在故障发生时能够快速恢复状态并实现Exactly-Once处理语义。以下是几种常见状态后端的详细介绍及其对比情况,以及不同场景下的选型建议:1.MemoryStateBackend(内存状态后端)描述:MemoryStateBackend将状态数据存储在TaskManager的JVM堆内存中,并在Checkp
- Flink 自定义类加载器和子优先类加载策略
lifallen
Flink数据库数据结构大数据flinkjava分布式
子类优先加载Flink默认采用了子优先(Child-First)的类加载策略来加载用户代码,以解决潜在的依赖冲突问题。我们可以通过源码来证明这一点。ChildFirstClassLoader的实现Flink中负责实现“子优先”加载逻辑的核心类是ChildFirstClassLoader。其关键的loadClassWithoutExceptionHandling方法定义了类加载的顺序。//...ex
- Flink window 源码分析4:WindowState
北_鱼
Flinkflink大数据bigdata
Flinkwindow源码分析1:窗口整体执行流程Flinkwindow源码分析2:Window的主要组件Flinkwindow源码分析3:WindowOperatorFlinkwindow源码分析4:WindowState本文分析的源码为flink1.18.0_scala2.12版本。reduce、aggregate等函数中怎么使用WindowState?主要考虑reduce、aggregate
- 阅读《语言的魔力》第二天
美妆博主樱子
《语言的魔力》第二章框架—换框第一次读这类的书,被深深的吸引了,原来自己经常说错话,今天读得特别慢,想着对于自己来说,明白了几个知识点,可以运用好也是一个很大的收获。图片发自App今天知道以结果框架,会让原本消极的情绪,转变为积极的心态;还会激发本能去思考和寻找答案,对自己还有一个心理暗示作用;我结合自己的案例,我之前会问别人“我想减肥”这好像不是自己很本能思考的事情,如果换框架就是“如果我要减肥
- Spring AI 实战:第六章、Spring AI源码浅析之一山可容二虎
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话第五
- 【童话连载】鲜花王国-第二章-1
知读堂
谁也说不清楚,这个王国是从什么时候开始存在的。有个老神仙说,在很久很久以前,这里只有山,山上只有石头。有些大石头被太阳晒得时间长了,会破裂成小石头,小石头会顺着山坡滚下来,有的摔碎了,就变成小沙子。山的脚下有一条小河,小河里总是有水日夜不停,不急不忙,不快不慢的流过。河水在山脚下冲刷出了河道,以后再有下雨的时候,雨水也会流到河道里,小河的水面就会涨高,从石头旁边流过,还会发出呵呵的笑声。
- 《正念:此刻是一枝花》Day5—21
顏汐
(2020年2月1日-21日Helen3.3读书会第17期)Day5阅读:第二章:修习的核心第一节:坐禅第二节:就座第三节:庄严第四节:坐姿比起我们的内心,我们周围的一切都不足挂齿。希望你试一试:每天拨出时间静坐一会儿。5分钟就行,如果想进步快一些,10分钟、20分钟甚或30分钟都行。坐下来,静观时光一点点流逝,什么都不要做,只充分感受当下。利用呼吸为锚,将你的注意力固定在当下。你的思绪会不断随心
- Flink实战(七十):监控(二)搭建flink可视化监控 Pushgateway+ Prometheus + Grafana (windows )
王知无(import_bigdata)
Flink系统性学习专栏flink大数据
1Flink的配置:在flink配置⽂件flink-conf.yaml中添加:metrics.reporter.promgateway.class:org.apache.flink.metrics.prometheus.PrometheusPushGatewayReportermetrics.reporter.promgateway.host:localhost#promgateway主要是Pus
- ubuntu linux 从入门到精通.pdf,UBUNTU LINUX从入门到精通(附DVD)
鲨鱼飞不动了
ubuntulinux从入门到精通.pdf
摘要:本书是为想系统学习Linux的初学者准备的,从系统,驱动,常用软件的安装开始讲起,让读者快速掌握Linux的基础知识,并轻松向网络管理,Shell,Vi/Vim,X-Window,进程管理进阶,然后深入到Apache,VSFTPD,Postfix,SAMBA,DNS等服务器的配置,全面掌握企业所需的Linux应用技能.传统的Linux图书主要以命令行的方式进行介绍,学习起来非常枯燥乏味,而且
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_