使用Python语言和Numpy库来构建神经网络模型

我们初步认识了神经网络的基本概念(如神经元、多层连接、前向计算、计算图)和模型结构三要素(模型假设、评价函数和优化算法)。本节将以“波士顿房价”任务为例,向读者介绍使用Python语言和Numpy库来构建神经网络模型的思考过程和操作方法。

波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“Hello World”。和大家对房价的普遍认知相同,波士顿地区的房价是由诸多因素影响的。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,如 图:
使用Python语言和Numpy库来构建神经网络模型_第1张图片图1:波士顿房价影响因素示意图

线性回归模型:
假设房价和各影响因素之间能够用线性关系来描述:

在这里插入图片描述
线性回归模型使用均方误差作为损失函数(Loss),用以衡量预测房价和真实房价的差异,公式如下:
在这里插入图片描述
构建波士顿房价预测任务的神经网络模型
深度学习不仅实现了模型的端到端学习,还推动了人工智能进入工业大生产阶段,产生了标准化、自动化和模块化的通用框架。不同场景的深度学习模型具备一定的通用性,五个步骤即可完成模型的构建和训练,如 图3 所示。
使用Python语言和Numpy库来构建神经网络模型_第2张图片图3:构建神经网络/深度学习模型的基本步骤
正是由于深度学习的建模和训练的过程存在通用性,在构建不同的模型时,只有模型三要素不同,其它步骤基本一致,深度学习框架才有用武之地
数据处理
数据处理包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理和封装load data函数。数据预处理后,才能被模型调用。

说明:

本教程中的代码都可以在AIStudio上直接运行,Print结果都是基于程序真实运行的结果。
由于是真实案例,代码之间存在依赖关系,因此需要读者逐条、全部运行,否则会导致命令执行报错。
读入数据
通过如下代码读入数据,了解下波士顿房价的数据集结构,数据存放在本地目录下housing.data文件中。

# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = './work/housing.data'
data = np.fromfile(datafile, sep=' ')
data

``数据形状变换
由于读入的原始数据是1维的,所有数据都连在一起。因此需要我们将数据的形状进行变换,形成一个2维的矩阵,每行为一个数据样本(14个值),每个数据样本包含13个X(影响房价的特征)和一个Y(该类型房屋的均价)。

# 读入之后的数据被转化成1维array,其中array的第0-13项是第一条数据,第14-27项是第二条数据,以此类推.... 
# 这里对原始数据做reshape,变成N x 14的形式
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE','DIS', 
                 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 查看数据
x = data[0]
print(x.shape)
print(x)

数据集划分
将数据集划分成训练集和测试集,其中训练集用于确定模型的参数,测试集用于评判模型的效果。为什么要对数据集进行拆分,而不能直接应用于模型训练呢?这与学生时代的授课和考试关系比较类似,如 图4 所示。
使用Python语言和Numpy库来构建神经网络模型_第3张图片图4:训练集和测试集拆分的意义
在本案例中,我们将80%的数据用作训练集,20%用作测试集,实现代码如下。通过打印训练集的形状,可以发现共有404个样本,每个样本含有13个特征和1个预测值。

ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
training_data.shape


# 计算train数据集的最大值,最小值,平均值
maximums, minimums, avgs = \
                     training_data.max(axis=0), \
                     training_data.min(axis=0), \
     training_data.sum(axis=0) / training_data.shape[0]
# 对数据进行归一化处理
for i in range(feature_num):
    #print(maximums[i], minimums[i], avgs[i])
    data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])`
#封装成load data函数
#将上述几个数据处理操作封装成load data函数,以便下一步模型的调用,实现方法如下
def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        #print(maximums[i], minimums[i], avgs[i])
        data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data
# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:]

# 查看数据
print(x[0])
print(y[0])

你可能感兴趣的:(使用Python语言和Numpy库来构建神经网络模型)