应用MATLAB实现模糊控制@TOC
模糊控制理解参考: https://blog.csdn.net/weixin_38145317/article/details/82966901
https://blog.csdn.net/qq_34445388/article/details/79086584
模糊计算的基本流程:
###1.1改变输入输出变量e和ec的模糊隶属形态
%输入1
f1=1;
a=addvar(a,'input','e',[-20*f1,20*f1]); %e:error
%添加 e 的模糊语言变量
a=addmf(a,'input',1,'NB','zmf',[-20*f1,-10*f1]); %z型
%添加 e 的模糊语言变量的隶属度函数(z型)
a=addmf(a,'input',1,'NM','trimf',[-20*f1,-9*f1,0]);
%隶属度函数为三角形
a=addmf(a,'input',1,'NS','trimf',[-20*f1,-6*f1,5*f1]);
a=addmf(a,'input',1,'Z','trimf',[-10*f1,0,10*f1]);
a=addmf(a,'input',1,'PS','trimf',[-8*f1,6*f1,20*f1]);
a=addmf(a,'input',1,'PM','trimf',[0,10*f1,20*f1]);
a=addmf(a,'input',1,'PB','smf',[8*f1,20*f1]);
%输入2
f2=1;
a=addvar(a,'input','ec',[-22*f2,22*f2]);
%添加 ec 的模糊语言变量
a=addmf(a,'input',2,'NB','zmf',[-22*f2,-8*f2]);
a=addmf(a,'input',2,'NM','trimf',[-22*f2,-15*f2,0]);
a=addmf(a,'input',2,'NS','trimf',[-22*f2,-9*f2,10*f2]);
a=addmf(a,'input',2,'Z','trimf',[-15*f2,0,12*f2]);
a=addmf(a,'input',2,'PS','trimf',[-8*f2,8*f2,22*f2]);
a=addmf(a,'input',2,'PM','trimf',[0,15*f2,22*f2]);
a=addmf(a,'input',2,'PB','smf',[6*f2,22*f2]);
%输出
f3=1.5;
a=addvar(a,'output','u',[-30*f3,30*f3]);
%添加 u 的模糊语言变量
a=addmf(a,'output',1,'NB','zmf',[-30*f3,-7*f3]);
a=addmf(a,'output',1,'NM','trimf',[-30*f3,-15*f3,0]);
a=addmf(a,'output',1,'NS','trimf',[-18*f3,-9*f3,9*f3]);
a=addmf(a,'output',1,'Z','trimf',[-15*f3,0,15*f3]);
a=addmf(a,'output',1,'PS','trimf',[-10*f3,8*f3,30*f3]);
a=addmf(a,'output',1,'PM','trimf',[0,15*f3,30*f3]);
a=addmf(a,'output',1,'PB','smf',[11*f3,30*f3]);
%规则库
rulelist=[1 1 1 1 1; %编辑模糊规则,后俩个数分别是规则权重和AND OR选项
1 2 1 1 1;
1 3 1 1 1;
1 4 2 1 1;
1 5 2 1 1;
1 6 3 1 1;
1 7 4 1 1;
2 1 1 1 1;
2 2 2 1 1;
2 3 2 1 1;
2 4 2 1 1;
2 5 3 1 1;
2 6 4 1 1;
2 7 5 1 1;
3 1 3 1 1;
3 2 3 1 1;
3 3 2 1 1;
3 4 5 1 1;
3 5 3 1 1;
3 6 7 1 1;
3 7 5 1 1;
4 1 1 1 1;
4 2 2 1 1;
4 3 2 1 1;
4 4 4 1 1;
4 5 3 1 1;
4 6 4 1 1;
4 7 5 1 1;
5 1 2 1 1;
5 2 2 1 1;
5 3 2 1 1;
5 4 4 1 1;
5 5 3 1 1;
5 6 3 1 1;
5 7 6 1 1;
6 1 1 1 1;
6 2 1 1 1;
6 3 2 1 1;
6 4 3 1 1;
6 5 3 1 1;
6 6 5 1 1;
6 7 6 1 1;
7 1 1 1 1;
7 2 2 1 1;
7 3 2 1 1;
7 4 3 1 1;
7 5 4 1 1;
7 6 2 1 1;
7 7 6 1 1;];
a=addrule(a,rulelist); %添加模糊规则函数
showrule(a) %显示模糊规则函数
a1=setfis(a,'DefuzzMethod','centroid'); %设置解模糊方法
writefis(a1,'fuzzf'); %保存模糊系统
a2=readfis('fuzzf'); %从磁盘读出保存的模糊系统
disp('fuzzy Controller table:e=[-3,+3],ec=[-3,+3]');%显示矩阵和数组内容
%推理
Ulist=zeros(7,7); %全零矩阵
for i=1:7
for j=1:7
e(i)=-4+i;
ec(j)=-4+j;
Ulist(i,j)=evalfis([e(i),ec(j)],a2); %完成模糊推理计算
end
end
% Ulist=ceil(Ulist) %朝正无穷方向取整
Ulist %朝正无穷方向取整
%画出模糊系统
figure(1); plotfis(a2);
figure(2);plotmf(a,'input',1);
figure(3);plotmf(a,'input',2);
figure(4);plotmf(a,'output',1);
'1. If (e is NB) and (ec is NB) then (u is NB) (1) ’
'2. If (e is NB) and (ec is NM) then (u is NB) (1) ’
'3. If (e is NB) and (ec is NS) then (u is NB) (1) ’
'4. If (e is NB) and (ec is Z) then (u is NM) (1) ’
'5. If (e is NB) and (ec is PS) then (u is NM) (1) ’
'6. If (e is NB) and (ec is PM) then (u is NS) (1) ’
'7. If (e is NB) and (ec is PB) then (u is Z) (1) ’
'8. If (e is NM) and (ec is NB) then (u is NB) (1) ’
'9. If (e is NM) and (ec is NM) then (u is NM) (1) ’
‘10. If (e is NM) and (ec is NS) then (u is NM) (1)’
'11. If (e is NM) and (ec is Z) then (u is NM) (1) ’
‘12. If (e is NM) and (ec is PS) then (u is NS) (1)’
'13. If (e is NM) and (ec is PM) then (u is Z) (1) ’
‘14. If (e is NM) and (ec is PB) then (u is PS) (1)’
‘15. If (e is NS) and (ec is NB) then (u is NS) (1)’
‘16. If (e is NS) and (ec is NM) then (u is NS) (1)’
‘17. If (e is NS) and (ec is NS) then (u is NM) (1)’
'18. If (e is NS) and (ec is Z) then (u is PS) (1) ’
‘19. If (e is NS) and (ec is PS) then (u is NS) (1)’
‘20. If (e is NS) and (ec is PM) then (u is PB) (1)’
‘21. If (e is NS) and (ec is PB) then (u is PS) (1)’
'22. If (e is Z) and (ec is NB) then (u is NB) (1) ’
'23. If (e is Z) and (ec is NM) then (u is NM) (1) ’
'24. If (e is Z) and (ec is NS) then (u is NM) (1) ’
'25. If (e is Z) and (ec is Z) then (u is Z) (1) ’
'26. If (e is Z) and (ec is PS) then (u is NS) (1) ’
'27. If (e is Z) and (ec is PM) then (u is Z) (1) ’
'28. If (e is Z) and (ec is PB) then (u is PS) (1) ’
‘29. If (e is PS) and (ec is NB) then (u is NM) (1)’
‘30. If (e is PS) and (ec is NM) then (u is NM) (1)’
‘31. If (e is PS) and (ec is NS) then (u is NM) (1)’
'32. If (e is PS) and (ec is Z) then (u is Z) (1) ’
‘33. If (e is PS) and (ec is PS) then (u is NS) (1)’
‘34. If (e is PS) and (ec is PM) then (u is NS) (1)’
‘35. If (e is PS) and (ec is PB) then (u is PM) (1)’
‘36. If (e is PM) and (ec is NB) then (u is NB) (1)’
‘37. If (e is PM) and (ec is NM) then (u is NB) (1)’
‘38. If (e is PM) and (ec is NS) then (u is NM) (1)’
'39. If (e is PM) and (ec is Z) then (u is NS) (1) ’
‘40. If (e is PM) and (ec is PS) then (u is NS) (1)’
‘41. If (e is PM) and (ec is PM) then (u is PS) (1)’
‘42. If (e is PM) and (ec is PB) then (u is PM) (1)’
‘43. If (e is PB) and (ec is NB) then (u is NB) (1)’
‘44. If (e is PB) and (ec is NM) then (u is NM) (1)’
‘45. If (e is PB) and (ec is NS) then (u is NM) (1)’
'46. If (e is PB) and (ec is Z) then (u is NS) (1) ’
'47. If (e is PB) and (ec is PS) then (u is Z) (1) ’
‘48. If (e is PB) and (ec is PM) then (u is NM) (1)’
‘49. If (e is PB) and (ec is PB) then (u is PM) (1)’
模糊控制优点:使用语言方法,不需要建立被控对象的精确的数学模型,只要对被控对象有大体了解,并总结出控制规则就能快速实现控制.;
模糊控制的缺点:.信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;