- OpenSIPS 邂逅 Kafka:构建高效 VoIP 消息处理架构
c_zyer
opensipsSIP消息队列kafkaopensipsvoip
使用场景使用步骤引入模块组装&发送数据消费数据故障转移使用场景异步日志处理:将OpenSIPS中的SIP信令日志、通话记录(CDR)等数据发送到Kafka队列中。事件通知与监控:利用OpenSIPS的event_interface模块将SIP事件(如呼叫建立、断开、注册等)推送到KafkaOpenSIPS中事件接口有以下类型:EVENT_DATAGRAM-PublishJSON-RPCnotifi
- Kafka事务机制详解
一碗黄焖鸡三碗米饭
Kafka全景解析kafka分布式Java副本事务分区大数据
目录Kafka事务机制详解1.Kafka中的事务概述2.Kafka事务的基本概念2.1精确一次处理(ExactlyOnceSemantics,EOS)2.2Kafka事务的工作流程3.Kafka事务的配置与使用3.1生产者端的事务配置3.2消费者端的事务配置4.Kafka事务的优势与限制4.1Kafka事务的优势4.2Kafka事务的限制5.总结在分布式系统中,事务性操作(如数据库事务)是非常重要
- kafka的ISR机制详解
inori1256
kafka分布式
Kafka的ISR机制ISR(In-SyncReplicas同步副本集)机制是一种用于确保数据可靠性和一致性的重要机制。一、ISR的定义ISR是指与Kafka分区中的Leader副本保持同步的Follower副本集合。这些副本已经复制了Leader副本的所有数据,并且它们的落后时间在一定范围内,因此被认为是可靠的、可以用于故障转移和数据恢复的副本。二、ISR的作用数据复制:当消息被写入Kafka的
- 一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥密
落霞归雁
AI编程教育电商微信开放平台rabbitmq中间件
一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥秘在当今数字化时代,消息队列(MessageQueue,简称MQ)已经成为分布式系统中不可或缺的组件,而ApacheKafka作为其中的佼佼者,以其卓越的性能和广泛的应用场景脱颖而出。今天,就让我们用一句话读懂Kafka,并通过5W1H(What、Why、Who、When、Where、How)的方式,深入剖析它的核心价值与技术魅力。一句话读懂
- Kafka——两种集群搭建详解 k8s
Michaelwubo
kafka分布式
1、简介Kafka是一个能够支持高并发以及流式消息处理的消息中间件,并且Kafka天生就是支持集群的,今天就主要来介绍一下如何搭建Kafka集群。Kafka目前支持使用Zookeeper模式搭建集群以及KRaft模式(即无Zookeeper)模式这两种模式搭建集群,这两种模式各有各的好处,今天就来分别介绍一下这两种方式1.1、Kafka集群中的节点类型一个Kafka集群是由下列几种类型的节点构成的
- 零基础学习性能测试第九章:全链路追踪-系统中间件节点监控
试着
性能测试学习中间件性能测试零基础
目录一、为什么需要监控中间件节点?二、主流中间件监控方案1.监控体系架构2.监控工具矩阵三、环境搭建实战1.部署Prometheus2.部署Grafana四、中间件监控配置实战1.Nginx监控2.Redis监控3.Kafka监控4.MySQL监控五、全链路追踪中的中间件监控1.SkyWalking与Prometheus集成2.全链路视角的中间件监控六、性能瓶颈定位实战1.瓶颈分析流程图2.典型瓶
- Kafka 去 ZooKeeper 化实战:KRaft 架构高可用部署实践与运维提升之道
derek2026
部署实践kafka运维持续部署
Kafka去ZooKeeper化实战:KRaft架构高可用部署实践与运维提升之道一、为什么选择Kafka-Kraft架构?Kafka作为分布式消息系统的标杆,长期依赖ZooKeeper进行元数据管理。但Kafka-Kraft模式通过引入自管理的元数据仲裁机制,彻底摆脱了ZooKeeper依赖,带来三大核心优势:部署简化:减少运维组件,降低系统复杂度性能提升:元数据操作延迟降低40%稳定性增强:消除
- RocketMQ常见问题梳理
kk在加油
rocketmq
MQ常见问题深度剖析:消息不丢失、顺序性、幂等性与积压处理本文基于RocketMQ核心原理,结合Kafka/RabbitMQ对比,深入分析MQ四大核心问题解决方案一、消息不丢失保障机制消息丢失风险点跨网络传输:生产者→Broker、Broker→消费者、主从同步Broker缓存机制:PageCache异步刷盘导致数据未持久化极端故障:整个MQ集群宕机生产者保证方案1.发送确认机制//RocketM
- Flink Oracle CDC logminer ogg 对比, PDB logminer CDC 测试
维度FlinkCDC(主库)FlinkCDC(备库)Flinkconnector(Kafka)ADG(ActiveDataGuard)同步机制基于LogMiner解析RedoLog需通过OGG同步备库基于LogMiner解析RedoLog需通过OGG捕获日志后写入Kafka物理复制,主备数据块一致架构特点需直连主库独立进程,低侵入性独立进程,低侵入性仅支持查询,无法捕获实时变更数据链路oracle
- kafka的消息存储机制和查询机制
不辉放弃
kafka大数据开发数据库pyspark
Kafka作为高性能的分布式消息队列,其消息存储机制和查询机制是保证高吞吐、低延迟的核心。以下从存储机制和查询机制两方面详细讲解,包含核心原理、关键组件及工作流程。一、Kafka消息存储机制Kafka的消息存储机制围绕高可用、高吞吐、可扩展设计,核心是通过分区、副本、日志分段和索引实现高效存储与管理。1.基本组织单位:主题(Topic)与分区(Partition)主题(Topic):消息的逻辑容器
- 【kafka4源码学习系列】kafka4总体架构介绍
oraen
学习kafka架构
二kafka架构介绍学习一个系统之前很重要的一点就是先了解这个系统整体的架构,这能够使我们对整个系统有个总体的认识,清楚地知道这个系统有什么能力。这不仅帮助我们学习时快速定位到我们想要的内容,还能避免我们学习过程中在庞大的系统中迷失自己。所以首先我会介绍一下kafka的整体架构,包括这个kafka系统的整体架构,模块组成,模块的功能以及模块之间关系,以及各个模块之间是怎么共同构成这套系统的。kaf
- ogg同步Kafka到oracle,ORACLE OGG同步到KAFKA
ORACLEOGG同步到KAFKA1、介绍Kafka是一种高效的消息队列实现,经过订阅kafka的消息队列,下游系统能够实时获取在线Oracle系统的数据变动状况,实现业务系统javaogg同步全量数据方式:①经过数据泵方式基于SCN导出并导入到目标端,此方式用于Oracle到Oracle的ogg同步环境中。②经过ogg自己的初始化方式,初始化全量数据到目标端,此方式通用于全部环境,可是速度相对较
- oracle ogg 全量 增量,1.利用ogg实现oracle到kafka的增量数据实时同步.md
##利用ogg实现oracle到kafka的增量数据实时同步####前言>ogg即OracleGoldenGate是Oracle的同步工具,本文讲如何配置ogg以实现Oracle数据库增量数据实时同步到kafka中,其中同步消息格式为json。下面是源端和目标端的一些配置信息:|--|版本|OGG版本|IP|别名||:---------|:--:|-----------:|:-----------
- 第四篇:深入探讨Kafka消费者的架构和原理
Gemini技术窝
kafka架构java后端中间件
大家好!今天我们要深入探讨Kafka消费者的架构和原理。Kafka消费者是从Kafka集群中读取消息的客户端应用,其设计和实现直接影响消息处理的效率和可靠性。本文将介绍Kafka消费者和消费者组的原理和作用,使用示例代码和源码剖析消费者的参数和功能,并详细介绍Kafka消费者如何订阅主题和分区。希望通过这篇文章,你能全面理解Kafka消费者的工作机制。准备好了吗?让我们开始吧!文章目录一、Kafk
- Kafka消费者负载均衡策略
⼀个消费者组中的⼀个分⽚对应⼀个消费者成员,他能保证每个消费者成员都能访问,如果组中成员太多会有空闲的成员Kafka消费者负载均衡策略详解从分区分配算法到Rebalance机制,全面解析Kafka如何实现消费者间的负载均衡,并提供调优建议和问题解决方案。1.核心概念术语作用类比ConsumerGroup共享消费任务的消费者组外卖骑手团队PartitionTopic的物理分片配送区域划分Rebala
- 狂神说Linux笔记
是你牛天成
项目部署linux
B站视频狂神说LinuxJava开发之路:JavaSE,MySQL,前端(html,css,js),javaweb,SSM框架,SpringBootvue,SpringCloud,(mybatis-plusgit)LinuxLinux操作系统:Window、Mac消息队列(Kafka,RabbitMQ,RockeetMQ)缓存(Redis)搜索引擎(ElasticSearch)集群分布式(需要购买
- Kafka消费者负载均衡和数据积压问题
抱紧大佬大腿不松开
kafka负载均衡分布式大数据
在大数据领域中,ApacheKafka是一个常用的分布式消息队列系统,它被广泛应用于实时数据处理和流式数据处理场景。Kafka的消费者负载均衡机制和数据积压问题是使用Kafka时需要关注和解决的重要议题。消费者负载均衡机制是指如何将消息分配给多个消费者,以实现高吞吐量和高可扩展性。Kafka通过使用消费者组(consumergroup)的概念来实现负载均衡。一个消费者组可以包含多个消费者,每个消费
- kafka的消费者负载均衡机制
不辉放弃
kafka负载均衡分布式数据库
Kafka的消费者负载均衡机制是保证消息高效消费的核心设计,通过将分区合理分配给消费者组内的消费者,实现并行处理和负载均衡。以下从核心概念、分配策略、重平衡机制等方面详细讲解。一、核心概念理解消费者负载均衡前,需明确三个关键概念:消费者组(ConsumerGroup)多个消费者组成的逻辑组,共同消费一个或多个主题的消息。组内消费者共享一个group.id标识,Kafka通过该标识区分不同消费组。分
- 实时流式计算
实时流式计算一般流式计算会与批量计算相比较。在流式计算模型中,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算代替全量计算。KafkaStreamKafkaStream是
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- Kafka MQ 消费者应用场景
二六八
MQ消息队列kafkalinq分布式java
KafkaMQ消费者应用场景1消费者自动提交的时机在Kafka中默认的消费位移的提交方式是自动提交,这个由消费者客户端参数enable.auto.commit配置,默认值为true。当然这个默认的自动提交不是每消费一条消息就提交一次,而是定期提交,这个定期的周期时间由客户端参数auto.commit.interval.ms配置,默认值为5秒,此参数生效的前提是enable.auto.commit参
- Oracle数据发送到kafka传输数据
Oracle数据发送到kafka传输数据配置OGGADPATERFORKAFKA需要的kafka包:Kafka0.8.2.1kafka-clients-0.8.2.1.jarlz4-1.2.0.jarslf4j-api-1.7.6.jarsnappy-java-1.1.1.6.jar#######配置OGG主库dbloginuseridgoldengate,passwordoggpassworda
- Kafka分区副本分配规则
罗纳尔光
Kafkakafkajava分区副本机架扩缩分区
Kafka分区副本分配规则文章目录Kafka分区副本分配规则1、前言2、自动分配a.无机架方式分配b.有机架方式分配(1)机架介绍(2)有机架方式分配的目的(3)分配规则c.问题3、指定分配规则分配参考文献1、前言 我们在创建topic或者是新增分区时,如果不指定分区副本的分配方式,Kafka会自动帮我们分配,那Kafka是如何帮我们分配的呢?我们如果指定分区副本的分配方式,Kafka会做哪些事情
- Python领域Tornado的消息队列集成
PythonAI编程架构实战家
Python编程之道pythontornado开发语言ai
Python领域Tornado的消息队列集成关键词:Tornado、消息队列、异步编程、集成架构、高性能、微服务、事件驱动摘要:本文深入探讨如何在Tornado框架中高效集成消息队列,解决高并发场景下的异步通信问题。通过解析Tornado的异步IO模型与消息队列的核心原理,结合RabbitMQ、Kafka等主流队列的集成案例,详细演示异步生产者/消费者的实现方法,涵盖性能优化、异常处理和实战应用。
- java kafka监听,使用非注解形式的javaConfig配置进行kafka消息监听
幻想青年卢六六
javakafka监听
最近在做平台的kafka消息监听的改造,以前用的是平台自己封装jar,现在统一改用spring-kafka.jar,这样的好处是减少特殊处理,便于统一维护。以下是配置:importjava.util.*;/***@Description:kafka配置类*@Author:LiuBing*@Date:13:422018/9/12*/@ConfigurationpublicclassKafkaConf
- Kafka——多线程开发消费者实例
引言在分布式系统领域,Kafka凭借高吞吐量、低延迟的特性成为消息队列的事实标准。随着硬件技术的飞速发展,服务器多核CPU已成常态——一台普通的云服务器动辄配备16核、32核甚至更多核心。然而,KafkaJavaConsumer的设计却长期保持着"单线程"的核心架构,这看似与硬件发展趋势相悖的设计背后,隐藏着怎样的考量?当我们面对每秒数十万条消息的处理需求时,单线程消费的瓶颈会愈发明显:消息堆积、
- 【方案白嫖】Kafka如何监听动态改变的topic
橙皇cc
Kafkajavakafkaspring数据库
问题简述:服务运行过程中,需要根据实际情况(配置)动态改变监听的topic。方案一:如果想改变的topic可以符合一定的规则,能做到正则限定范围,在限定的范围内变动,可以直接配置KafkaListener监听正则规则。@Configuration@EnableKafkapublicclassKafkaConfig{privatestaticfinalStringKAFKA_SERVERS_CONF
- prometheus + kafka_exporter监听kafka
一、下载kafka_exporter安装包1、本地下载后上传到linux服务器下载地址:https://github.com/danielqsj/kafka_exporter/releases/2、直接在linux服务器上wget方式下载#进入目标目录cd/data/prometheus#下载wgethttps://github.com/danielqsj/kafka_exporter/relea
- 2022-08-05 Kafka Shell操作
一、Kafka提供的shell操作命令下面只列出常用选项,其他选项请参考官方文档1.kafka-topics.sh(1)语法kafka-topics.sh--bootstrap-serverhost1:port1,...--(list|describe|create|alter|delete)[--可选选项](2)必要选项选项名描述bootstrap-serverhost1:prot1,...指定
- kafka如何保证数据不丢失
不辉放弃
kafka数据库大数据开发pyspark
下面我将使用Python代码示例,从生产者、集群和消费者三个层面详细讲解Kafka如何保证数据不丢失。我们将使用kafka-python库来实现相关功能。一、生产者层面的数据不丢失保证生产者通过配置确认机制、重试策略和幂等性来确保数据不丢失。fromkafkaimportKafkaProducerfromkafka.errorsimportKafkaErrorimporttimedefcreate
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,