Handler机制是Android开发中最常见的机制,可以说贯穿整个Android,在探究Handler机制原理之前,我们先来捋一下用法
1.handler.post(Runnable)
2.handler.postdelayed(Runnable,int)
3.sendMessage(Message)
4.sendDelayMessage(Message,int)
从形式上就可以看出,第一种用法和第二种用法其实是一样的,只不过一个立即发送一个延迟发送而已,同理三四也是一样
我们先探究handler.post,post具体用法是
handler = new Handler();
hander.post(new runnable(){run(//具体逻辑){}});
首先我们找到Handler源码
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
代码不多,一个一个解析,当我们handler = new Handler();时,实际上传入了两个参数进入Handler,一个是null,另一个是false
callback是一个接口,里面只有一个方法
public interface Callback {
public boolean handleMessage(Message msg);
}
这里传入的是null,暂且放下不谈。这个函数主要过程是初始化Handler里的变量mLooper,mQueue,mCallback以及mAsynchronous
首先mLooper = Looper.myLooper();从这里拿到一个looper,为什么这里会拿到一个looper对象?从这里就要引出ActivityThread.main方法
一个app启动开始,最先调用的方法是ActivityThread.main方法,如同java里的main方法一样,这个方法是程序的入口,那么这个方法到底干了什么
public static void main(String[] args) {
SamplingProfilerIntegration.start();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
Security.addProvider(new AndroidKeyStoreProvider());
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("");
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
这里先调用了prepare(false)
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
这里先通过sThreadLocal.get()去查找looper,如果发现线程中以及有looper了就抛出异常,Only one Looper may be created per thread每一个线程中只能有一个loop
这里我们是程序第一次启动,当然没有looper,于是接下来调用new Looper创建一个looper
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
looper里包含了一个mQueue和mThread,将当前线程传入,这里我们是主线程传入
然后将looper放入sThreadLocal中,ThreadLocal是一个数据内部储存类,它的神奇之处就在于,使用ThreadLocal储存的对象在不同线程访问会得出不同的对象
打个比方,我们用static进行变量储存的时候,就像我们玩游戏时的公会银行,谁都可以取,谁也可以存,不管谁取出来都是一样的东西,因此在我们不同线程取出来static变量其实是一样的。而使用ThreadLocal进行储存的话,就像我们现实中的银行,一人一个账户,我不可以取你存进去的东西。这里有什么好处呢,这里就可以保证了我(Thread)取出来的东西(looper)一定是我的。其实说了这么说,ThreadLocal里面的实现也很简单,只不过将当前的Thread作为key传进去,本质上还是键值对的方式进行存储。
好,说了这么多让我们回到主线,prepare方法我们已经执行完了,在里面我们新建了looper并存储在ThreadLocal中
程序继续走下去,走到sMainLooper = myLooper();
public static Looper myLooper() {
return sThreadLocal.get();
}
这里设置了主线程的looper。
综上分析,mLooper = Looper.myLooper();拿到的是主线程的looper。这里就要注意一点,如果我们是在子线程中调用Handler,我们必须给它传入一个looper,因为在子线程中是没有looper的,那我们在子线程中就应该通过Looper.prepare()拿到一个新的looper,将这个looper传入Handler的构造函数就好了
OK,我们回到handler的构造函数中,我们已经拿到了一个looper对象,接下来我们就可以从Looper中取出mQueue,然后的初始化就没有什么好分析了。
我们来看看handler.post函数为什么明明在子线程中,而它的run方法却是在主线程中
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
这里我们进入getPostMessage看看
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
Message.obtain返回一个新的Message对象
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
然后我们接着调用sendMessageDelayed(getPostMessage(r), 0);
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里的target是一个Handler变量,这里它传入了主线程的Handler
接着走下去
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w("MessageQueue", e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这里我们可以看到一个死循环,我们不必拘泥于代码本身,这段代码的意思将manager插入mQueue
代码走到这里仿佛走死了,说好的调用切换线程呢?
不急,还记得我们ActivityThread.main函数吗?里面我们还有一个方法没讲呢,那就是looper.loop();
这就是Handler之所以能切换线程的关键所在,让我们走进方法
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (false) Log.v("MessageQueue", "Returning message: " + msg);
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf("MessageQueue", "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
其实当初看书看到这里还是有疑问的,作者本身爱较真,奈何能力实在有限,等到很长时间才反应过来。作者是这么理解的,我的方法虽然在子线程调用,但是我将子线程中执行的方法打包成一个Message,然后发送到一个共同的Messagequeue,提醒主线程告诉它我已经发消息了,主线程收到我的提醒以后就去Messagequeue中拿出Message,把Message中的方法调用出来执行,这才是Handler消息机制的原理。很多Handler详解都没有告诉作者原来还有提醒这一步,导致作者原来对Handler机制十分模糊。
提醒主线程这一步是在native层实现的,翻了翻源码,发现只有在enqueueMessage方法中if (needWake) nativeWake(mPtr);比较可疑,只能靠一些边角东西推理了
private long mPtr; // used by native code
nativePollOnce(ptr, nextPollTimeoutMillis);
作者猜测这个方法应该是阻塞这个方法并接收nativeWake的了。
扯了这么多,还是回到Looper.loop方法中,我们已经取出Message了,接下来就调用msg.target.dispatchMessage(msg);
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
这个方法实现就更简单了
private static void handleCallback(Message message) {
message.callback.run();
}
接下来我们来看看sendMessage(Message),其实两种方式原理都是一样的,只不过一开始走的路不太一样
如果我们要用sendMessage方法,我们需要重写Handler.handleMessage方法,让我们进入源码
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
剩下的源码都和post是一模一样的,只有结尾是不一样的,那我再贴一遍好了
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
因为我们没有传入Runnable,所以msg.callback == null,而mcallback是Handler初始化时传入的参数,我们调用的不是这个构造方法,所以mcallback也是空,最后调用我们重写的handleMessage方法。
其实Handler使用方法还不止四种,作者只是举出了几个常见的,例如还有view.post方法,或者new一个实现了callback接口的对象,将callback传入Handler一样能异步调用,这里就不再多说了。当然,最常见的还是直接在子线程中调用runOnUIThread方法,该方法里的逻辑代码全部运行在主线程中。
最后再说一点其他的,毕竟文章写了是详解
1.假如我们需要消息回传怎么办呢,我不满足子线程光发送消息给主线程,我还想主线程发消息给子线程?
我们回看当初子线程给主线程发送消息的机制,其实是子线程拿到了主线程的looper,从Looper中取出了mqueque,然后两个线程通过mqueue进行通信
所以如果主线程要想发消息给子线程,就一定要拿到子线程的looper。子线程的looper怎么创建在上文已经说了,最后还要调用Looper.loop方法,不然光主线程做好发消息的准备了,子线程还没做好接收消息的准备。
2.Handler中还有其他构造方法,比如说传入looper对象进行构造,当主线程给子线程Thread进行通信时,调用Thread.loop可能拿不到子线程的loop,因为这个时候子线程的loop可能还没创建,这时候又该怎么办?
换个构造方法!!!!好吧,你不想换怎么办,那就使用HandlerThread,HandlerThread是一个扩展了Thread的类,专门用于Handler通信,在HandlerThread的run方法里自带创建looper和loop.loop
public class HandlerThread extends Thread
HandlerThread中有一个getloop方法,我们来看一下
public Looper getLooper() {
if (!isAlive()) {
return null;
}
// If the thread has been started, wait until the looper has been created.
synchronized (this) {
while (isAlive() && mLooper == null) {
try {
wait();
} catch (InterruptedException e) {
}
}
}
return mLooper;
}
如果Thread还没有开始,那么就会调用wait方法,那么何时被唤醒呢
@Override
public void run() {
mTid = Process.myTid();
Looper.prepare();
synchronized (this) {
mLooper = Looper.myLooper();
notifyAll();
}
Process.setThreadPriority(mPriority);
onLooperPrepared();
Looper.loop();
mTid = -1;
}
并不是,我们之所以不让子线程更新UI,是因为有一个并发的问题,Android为了解决这个问题,就在View类里更新UI的方法进行了判断,判断该线程是不是主线程,可是View的实现类ViewRootImp是在OnResume中初始化的额,于是,当我们在oncrate中创建线程并更新UI的时候就有可能在OnResume方法之前完成,因此凡事都不是绝对的
详解到这里就结束了,要是解决了你的疑惑,别忘了顶一个,这是对作者的肯定