- Zread.AI:一键将GitHub项目转化为结构化中文手册的AI代码维基工具
Zread.AI:一键将GitHub项目转化为结构化中文手册的AI代码维基工具文章来源:PoixeAI文章目录Zread.AI工具概述核心功能优势亮点典型应用场景上手指南注意事项官网地址Zread.AI由智谱Z.ai推出,是一款面向开发者的AI代码维基工具,可在几秒内把任何公开GitHub仓库转化为结构化中文手册,并通过独家Buzz面板聚合commits、issues与相关新闻,让项目脉搏一目了然
- 神经形态计算如何突破冯·诺依曼架构限制?
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构架构ai
神经形态计算如何突破冯·诺依曼架构限制?关键词:神经形态计算、冯·诺依曼架构、内存墙、存算一体、脉冲神经网络、类脑芯片、低功耗计算摘要:本文将从“冯·诺依曼架构的前世今生”讲起,用“图书馆管理员搬书”的生活案例类比其核心矛盾,再通过“人脑神经元工作模式”的比喻引入神经形态计算的核心原理。我们将一步步拆解冯·诺依曼架构的三大限制(内存墙、高功耗、非结构化数据处理弱),并对应解析神经形态计算的三大突破
- 数据库基础概念梳理
22:30Plane-Moon
数据库
1.数据存储类型表(Table):存储结构化数据的标准方式,数据以行和列的形式组织,具有固定的格式。非结构化数据(UnstructuredData):如音频、视频、图片、文本文档等,其格式不固定,不易直接用表存储。2.SQL的核心优势SQL尤其擅长处理和操作存储在表中的结构化数据。2.1数据类型约束(DataTypeConstraints):定义列可存储的数据种类。整数类型:TINYINT(1字节
- 如何从模型返回结构化数据
努力学习agent
langchain人工智能
with_structured_output()方法支持此方法的模型ProviderToolcallingStructuredoutputJSONmodeLocalMultimodalPackageChatAnthropic✅✅❌❌✅langchain-anthropicChatMistralAI✅✅❌❌❌langchain-mistralaiChatFireworks✅✅✅❌❌langchain
- Python_day55序列预测任务介绍
且慢.589
Python_60python人工智能开发语言
在进入rnn相关变体的内容前,我们必须要搞懂序列任务的前生今世,这是我当初自学的时候非常迷茫和痛苦的,只有理解了序列任务,才知道模型为什么这么选择,数据为什么这么处理一、序列预测任务介绍1.1序列预测是什么?我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我
- C#的lambda表达式与Linq
hccee
c#linq
C#的lambda表达式、Linq、以及常用方法Lambda:简单来讲就是匿名函数,我们不声明方法名,只写一个方法体,这个方法体就是lambda表达式Linq:Linq是LanguageIntergratedQuery(语言集成查询)的缩写,可以对本地对象**集合**或者远程数据源进行结构化的查询操作。lambda表达式如何写一个lambda表达式首先,在写lambda表达式之前,需要先了解两个特
- 保姆级教程:AutoGen 日志系统从入门到实战
佑瞻
AutoGenAutoGen人工智能
在开发智能代理或复杂AI应用时,我们常常会面临一个关键挑战:如何高效管理系统运行过程中的日志记录?当项目规模逐渐扩大,仅仅依靠print语句调试显然不够专业,而混乱的日志格式又会给后续分析带来巨大麻烦。今天,我们就来聊聊AutoGen框架中一套优雅的日志解决方案——它基于Python内置logging模块,却又针对AI开发场景做了精心设计,尤其是跟踪日志与结构化日志的双轨机制,能让我们在开发调试和
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- Python爬虫实战:研究flanker相关技术
ylfhpy
爬虫项目实战python爬虫开发语言flanker
1.引言1.1研究背景与意义在当今信息爆炸的时代,互联网上的数据量呈现出指数级增长的趋势。如何从海量的网页数据中高效地获取有价值的信息,成为了一个重要的研究课题。网络爬虫作为一种自动获取网页内容的技术,能够帮助用户快速、准确地收集所需的信息,因此在信息检索、数据挖掘、舆情分析等领域得到了广泛的应用。Flanker技术是一种基于文本分析的信息提取技术,它能够从非结构化的文本中识别和提取出特定类型的信
- 架构进阶:精读数字化转型4A企业架构数据治理架构方案
智慧化智能化数字化方案
方案解读馆架构企业架构IT架构设计IT治理IT蓝图
本文概述了数字化转型中4A企业架构的数据治理架构方案的核心内容,以及数据架构(DA)与业务架构(BA)在企业架构中的关联与作用。数据治理架构方案目录主要包括以下五个关键部分:1.**数据架构概述**:作为4A企业架构的重要组成部分,数据架构(DA)以结构化的方式描述了企业数据的管理和应用,是确保数据一致性和有效性的基础。2.**数据资产目录**:详细记录了企业的所有数据资产,包括数据的来源、类型、
- 如何训练自己的结构化思维
杰然不同的生活
作为HR,我们在日常工作中,每天都要进行各种沟通和汇报,如何把信息全面、简明、有组织的传递出去,并与对方达成共识,提高我们的工作效率,通常要求沟通或汇报人具有良好的逻辑思维能力与突出的表达能力。但事实上,在我们的日常接触中,却常常会遇到这样的情况:1.和老板汇报工作,你讲得眉飞色舞,老板却get不到你想表达的重点;2.工作例会上,工作汇报成流水帐,开会和不开会没有太大区别;3.每个月都很忙,月底复
- Spring AI 实战:第六章、Spring AI源码浅析之一山可容二虎
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话第五
- Linux服务器安全自动化审计实战:一键扫描账户/网络/进程/计划任务风险(附开源脚本)
测试不设限
服务器linux安全
一、背景与痛点:为什么需要安全审计脚本?在日常服务器运维中,安全团队常面临三大挑战:人工巡检效率低下:手动检查账户、网络连接等需执行十余条命令隐蔽威胁难发现:异常计划任务、伪装进程等易被忽略合规压力:等保2.0等规范要求定期安全审计为此,我们开发了这款开源的Linux安全自动化审计脚本,可实现:5分钟内完成全维度安全检查输出结构化风险报告关键风险项自动标红预警二、脚本核心功能架构安全审计脚本账户安
- 结构化提示词(三):字节跳动Coze提示词优化器!
大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识,包括但不限于AI科普,AI工具测评,AI效率提升,AI行业洞察。关注我,AI之路不迷路,2024我们一起变强。本篇文章是结构化提示词系列的第三篇。关于结构化提示词的初级和进阶使用,请看我前
- 【PHP开发900个实用技巧】779.PHP应用分层:告别面条代码的“结构化思维”
精通代码大仙
PHP开发900个实用技巧phpandroid开发语言程序员创富
【颠覆你的代码习惯】779招PHP分层秘籍:从"意大利面条"到"千层蛋糕"的华丽蜕变——结构化思维让你代码清爽如风!779.PHP应用分层:告别面条代码的'结构化思维'表现层:直面用户的'门面担当'业务层:核心逻辑的'指挥官'数据访问层:数据库的'翻译官'工具层:重复劳动的'终结者'痛点分析:用户交互和业务纠缠?解决:剥离HTML模板引擎痛点分析:业务逻辑到处复制?解决:封装可复用的Service
- MIB(管理信息库)简介
MIB(ManagementInformationBase,管理信息库)是SNMP(简单网络管理协议)的核心组成部分,用于存储网络设备的可管理对象信息(如接口状态、CPU使用率、内存占用等),是网络管理员远程监控、配置和管理设备的关键工具。以下从定义、结构、作用、版本演变及实际应用等方面详细介绍:一、MIB的核心定义与作用MIB是网络设备中所有可被SNMP管理的信息的标准化集合,遵循结构化信息管理
- Swift 5, TypeScript, and Python Async/Await 机制对比分析
步子哥
swifttypescriptpython
Swift5、TypeScript和Python的async/await机制都旨在简化异步编程,但它们在实现细节、并发模型和性能特征上有所不同。Swift5的async/await构建于结构化并发之上,强调通过Task进行非阻塞的任务挂起和高效的线程利用。TypeScript(JavaScript)的async/await是基于Promise和事件循环的语法糖,适用于单线程非阻塞I/O环境。Pyt
- 小输入框,大讲究:Table 数字输入框 debounce 实战分享
陈三心
vue前端vue.js
前言大家好,我是陈三心,热爱技术和分享,欢迎大家交流,一起学习进步!个人主页:陈三心Table表格在前端开发中是十分常见的,用于展示结构化数据,如商品列表、用户信息等。本文分享一下自己在表格开发中遇到的一个奇葩问题,以及采取的解决方法。目录背景编辑数量极端情况闭包结语背景项目中使用AntDesignVue进行表格的开发,允许用户直接在表格内编辑数量,如下:上述就是本次任务需要实现的目标,是的,你没
- CSS伪类
chenmo2001
html5csscss3
伪类简介:伪类:这个叫法源于它们跟类相似,但实际上并没有类会附加到标记的标签上。伪类分为两种:-UI伪类:会在HTML元素处于某种状态时(例如:鼠标指针位于指针上),为该元素应用CSS样式。Hover-结构化伪类:会在标记中存在某种结构上的关系时(例如:某元素是一组元素中的第一个或最后一个),为该元素应用CSS样式。二、UI伪类UI元素状态伪类选择器有如下几个:Selector:link:匹配Se
- HBase 简介
HBase简介什么是HBaseApacheHBase是Hadoop数据库,一个分布式的、可伸缩的大数据存储。当您需要对大数据进行随机的、实时的读/写访问时,请使用ApacheHBase。这个项目的目标是在商品硬件的集群上托管非常大的表——数十亿行百万列的列。ApacheHBase是一个开源的、分布式的、版本化的、非关系的数据库,它模仿了Google的Bigtable:一个结构化数据的分布式存储系统
- SpringBoot(黑马)
rzl02
springboot后端java
阿里云OSS简介及时用步骤阿里云对象存储服务(ObjectStorageService,简称OSS)为您提供基于网络的数据存取服务。使用OSS,您可以通过网络随时存储和调用包括文本、图片、音频和视频等在内的各种非结构化数据文件。阿里云OSS将数据文件以对象(object)的形式上传到存储空间(bucket)中。使用步骤:1.注册登录阿里云(需实名认证)2.开通oss服务3.创建bucket4.进入
- 机器学习-XGBoost和SHAP解析数据
python机器学习ML
机器学习人工智能数据分析python
一、引言在机器学习领域,XGBoost表现出色,具有高效性、准确性、灵活性和良好的防过拟合能力。高效性使其能快速处理大规模复杂数据,降低训练时间成本。通过组合弱学习器提高准确性和泛化能力。其支持多种任务和自定义指标,参数调优选项丰富。内置正则化机制防止过拟合。同时,SHAP对模型解释起关键作用,能计算特征的SHAP值来明确特征对预测结果的贡献,帮助理解模型决策。二、数据准备和模型训练1.导入所需库
- Python 机器学习实战:基于 Scikit-learn
大力出奇迹985
python机器学习scikit-learn
本文围绕《Python机器学习实战:基于Scikit-learn的项目开发》展开,先介绍Scikit-learn库的基础特性与优势,再阐述机器学习项目开发的完整流程,包括数据收集与预处理、模型选择与训练、评估与优化等。通过具体实战案例,展示如何运用Scikit-learn解决分类、回归等问题,最后总结学习要点与未来学习方向,为读者提供系统的实战指导,助力快速掌握基于Scikit-learn的机器学
- 跨境电商 ai架构设计
Java程序员 拥抱ai
ai人工智能
一、核心理论基础AI生成知识库的本质是**“数据驱动的知识结构化与智能化生产”**,核心依赖三大理论支撑:知识工程理论将跨境电商业务中分散的“非结构化信息”(如产品参数、用户评价、物流规则、合规条款)转化为“结构化知识”(如实体关系、规则库、决策树),通过AI实现知识的自动提取、关联与更新。例:家具用品的“材质-环保标准-目标市场合规要求”(如欧盟E1级板材认证)可形成关联知识链。自然语言处理(N
- 利用 Tavily Search API 提升 AI 代理的搜索能力
VYSAHF
人工智能microsoftpython
技术背景介绍在人工智能代理的开发中,实时、准确的数据获取能力至关重要。TavilySearchAPI是专为大型语言模型(LLMs)设计的搜索引擎,它能够以极高的速度提供实时、准确且事实驱动的结果,对AI开发者来说是一项极具价值的工具。核心原理解析TavilySearch通过专门优化的搜索算法和高效的索引机制,确保其能够应对复杂的自然语言查询。它不仅提供传统的文本结果,还能返回结构化的答案和相关的多
- 三种主流数据库特点和作用(看看你用的哪种?)
恩比贤AmbitioN
算法javaspringmavenspringboot
以下是对MySQL、MongoDB和Redis三种主流数据库的详细介绍,涵盖其特点、优势以及适用场景,内容尽量丰富以满足需求。1.MySQL特点MySQL是一种开源的关系型数据库管理系统(RDBMS),基于表格存储数据,使用结构化查询语言(SQL)进行操作。它最初由瑞典公司MySQLAB开发,现由Oracle维护。MySQL以其高性能、可靠性和易用性闻名,广泛应用于Web开发、企业应用和数据分析场
- 用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力
凡间晨光
AI工具人工智能
用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力引言一、提示词工程:精准"指挥"AI的核心能力1.1结构化指令设计:给AI一个清晰的"任务清单"1.2细节补充与约束:给AI划清"创作边界"1.3纠错与迭代:让AI成为"可调教的助手"1.4工具辅助:提示词优化工具推荐二、多模态交互:打通"文本+图像+语音"的协作2.1图文互转:让文字和图像自由转换2.2语音联动:解放双手的高效交互
- 搜索引擎简介
搜索流程架构设计需兼顾海量数据处理能力、低延迟查询响应和结果相关性等。数据采集爬虫系统:从种子URL递归抓取,遵循robots协议(网站通过robots.txt声明哪些内容可抓取),避免违规抓取。数据预处理将原始数据(如HTML网页)转化为结构化、可索引的内容,提升后续索引和检索效率。网页解析与清洗:提取有效内容:从HTML中剥离标签(如),保留文本、标题、摘要、关键词等;排除广告、导航栏等冗余信
- MinIO深度解析:从核心特性到Spring Boot实战集成
我科绝伦(Huanhuan Zhou)
springboot后端java
在当今数据爆炸的时代,海量非结构化数据的存储与管理成为企业级应用的关键挑战。传统文件系统在TB级数据面前捉襟见肘,而昂贵的云存储服务又让中小企业望而却步。MinIO作为一款开源高性能对象存储解决方案,正以其独特的技术优势成为开发者的首选。本文将从技术原理出发,深入解析MinIO的核心特性,并通过实战案例展示其与SpringBoot的无缝集成。一、MinIO技术架构与核心优势MinIO是一款基于对象
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio