ConfigMap 功能在 Kubernetes1.2 版本中引入,许多应用程序会从配置文件、命令行参数或环境变量中读取配 置信息。ConfigMap API 给我们提供了向容器中注入配置信息的机制,ConfigMap 可以被用来保存单个属性,也 可以用来保存整个配置文件或者 JSON 二进制大对象
$ ls docs/user-guide/configmap/kubectl/
game.properties
ui.properties
$ cat docs/user-guide/configmap/kubectl/game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30
$ cat docs/user-guide/configmap/kubectl/ui.properties
color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice
$ kubectl create configmap game-config --from-file=docs/user-guide/configmap/kubectl
—from-file 指定在目录下的所有文件都会被用在 ConfigMap 里面创建一个键值对,键的名字就是文件名,值就 是文件的内容
只要指定为一个文件就可以从单个文件中创建 ConfigMap
$ kubectl create configmap game-config-2 --from-file=docs/userguide/configmap/kubectl/game.properties
$ kubectl get configmaps game-config-2 -o yaml
—from-file 这个参数可以使用多次,你可以使用两次分别指定上个实例中的那两个配置文件,效果就跟指定整个 目录是一样的
使用文字值创建,利用 —from-literal 参数传递配置信息,该参数可以使用多次,格式如下
$ kubectl create configmap special-config --from-literal=special.how=very --fromliteral=special.type=charm
$ kubectl get configmaps special-config -o yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
special.how: very
special.type: charm
apiVersion: v1
kind: ConfigMap
metadata:
name: env-config
namespace: default
data:
log_level: INFO
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: hub.atguigu.com/library/myapp:v1
command: [ "/bin/sh", "-c", "env" ]
env:
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.how
- name: SPECIAL_TYPE_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.type
envFrom:
- configMapRef:
name: env-config
restartPolicy: Never
apiVersion: v1
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
special.how: very
special.type: charm
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: hub.atguigu.com/library/myapp:v1
command: [ "/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)" ]
env:
- name: SPECIAL_LEVEL_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.how
- name: SPECIAL_TYPE_KEY
valueFrom:
configMapKeyRef:
name: special-config
key: special.type
restartPolicy: Never
apiVersion: v1
kind: ConfigMap
metadata:
name: special-config
namespace: default
data:
special.how: very
special.type: charm
在数据卷里面使用这个 ConfigMap,有不同的选项。最基本的就是将文件填入数据卷,在这个文件中,键就是文 件名,键值就是文件内容
apiVersion: v1
kind: Pod
metadata:
name: dapi-test-pod
spec:
containers:
- name: test-container
image: myapp:v1
command: [ "/bin/sh", "-c", "cat /etc/config/special.how" ]
volumeMounts:
- name: config-volume
mountPath: /etc/config
volumes:
- name: config-volume
configMap:
name: special-config
restartPolicy: Never
apiVersion: v1
kind: ConfigMap
metadata:
name: log-config
namespace: default
data:
log_level: INFO
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-nginx
spec:
replicas: 1
selector:
matchLabels:
run: my-nginx
template:
metadata:
labels:
run: my-nginx
spec:
containers:
- name: my-nginx
image: myapp:v1
ports:
- containerPort: 80
volumeMounts:
- name: config-volume
mountPath: /etc/config
volumes:
- name: config-volume
configMap:
name: log-config
$ kubectl exec `kubectl get pods -l run=my-nginx -o=name|cut -d "/" -f2` cat
/etc/config/log_level
INFO
修改 ConfigMap
$ kubectl edit configmap log-config
修改 log_level 的值为 DEBUG 等待大概 10 秒钟时间,再次查看环境变量的值
$ kubectl exec `kubectl get pods -l run=my-nginx -o=name|cut -d "/" -f2` cat /tmp/log_level
DEBUG
ConfigMap 更新后滚动更新 Pod
更新 ConfigMap 目前并不会触发相关 Pod 的滚动更新,可以通过修改 pod annotations 的方式强制触发滚动更新
$ kubectl patch deployment my-nginx --patch '{"spec": {"template": {"metadata": {"annotations":
{"version/config": "20190411" }}}}}'
***!!! 更新 ConfigMap 后: ***
***使用该 ConfigMap 挂载的 Env 不会同步更新 ***
***使用该 ConfigMap 挂载的 Volume 中的数据需要一段时间(实测大概10秒)才能同步更新 ***
容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题。首先,当容器崩溃 时,kubelet 会重启它,但是容器中的文件将丢失——容器以干净的状态(镜像最初的状态)重新启动。其次,在 Pod 中同时运行多个容器时,这些容器之间通常需要共享文件。Kubernetes 中的 Volume 抽象就很好的解决了 这些问题
Kubernetes 中的卷有明确的寿命 —— 与封装它的 Pod 相同。所f以,卷的生命比 Pod 中的所有容器都长,当这 个容器重启时数据仍然得以保存。当然,当 Pod 不再存在时,卷也将不复存在。也许更重要的是,Kubernetes 支持多种类型的卷,Pod 可以同时使用任意数量的卷
Kubernetes 支持以下类型的卷:
当 Pod 被分配给节点时,首先创建 emptyDir 卷,并且只要该 Pod 在该节点上运行,该卷就会存在。正如卷的名 字所述,它最初是空的。Pod 中的容器可以读取和写入 emptyDir 卷中的相同文件,尽管该卷可以挂载到每个容 器中的相同或不同路径上。当出于任何原因从节点中删除 Pod 时, emptyDir 中的数据将被永久删除
emptyDir 的用法有:
apiVersion: v1
kind: Pod
metadata:
name: test-pd
spec:
containers:
- image: k8s.gcr.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /cache
name: cache-volume
volumes:
- name: cache-volume
emptyDir: {}
hostPath 卷将主机节点的文件系统中的文件或目录挂载到集群中
hostPath 的用途如下:
除了所需的 path 属性之外,用户还可以为 hostPath 卷指定 type
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fgJV62rZ-1597102735557)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\1588831241738.png)]
使用这种卷类型是请注意,因为:
apiVersion: v1
kind: Pod
metadata:
name: test-pd
spec:
containers:
- image: k8s.gcr.io/test-webserver
name: test-container
volumeMounts:
- mountPath: /test-pd
name: test-volume
volumes:
- name: test-volume
hostPath:
# directory location on host
path: /data
# this field is optional
type: Directory
PersistentVolume (PV)
是由管理员设置的存储,它是群集的一部分。就像节点是集群中的资源一样,PV 也是集群中的资源。 PV 是 Volume 之类的卷插件,但具有独立于使用 PV 的 Pod 的生命周期。此 API 对象包含存储实现的细节,即 NFS、 iSCSI 或特定于云供应商的存储系统
PersistentVolumeClaim (PVC)
是用户存储的请求。它与 Pod 相似。Pod 消耗节点资源,PVC 消耗 PV 资源。Pod 可以请求特定级别的资源 (CPU 和内存)。声明可以请求特定的大小和访问模式(例如,可以以读/写一次或 只读多次模式挂载)
**静态 pv **
集群管理员创建一些 PV。它们带有可供群集用户使用的实际存储的细节。它们存在于 Kubernetes API 中,可用 于消费
动态
当管理员创建的静态 PV 都不匹配用户的 PersistentVolumeClaim 时,集群可能会尝试动态地为 PVC 创建卷。此 配置基于 StorageClasses :PVC 必须请求 [存储类],并且管理员必须创建并配置该类才能进行动态创建。声明该 类为 “” 可以有效地禁用其动态配置 要启用基于存储级别的动态存储配置,集群管理员需要启用 API server 上的 DefaultStorageClass [准入控制器] 。例如,通过确保 DefaultStorageClass 位于 API server 组件的 --admission-control 标志,使用逗号分隔的 有序值列表中,可以完成此操作
**绑定 **
master 中的控制环路监视新的 PVC,寻找匹配的 PV(如果可能),并将它们绑定在一起。如果为新的 PVC 动态 调配 PV,则该环路将始终将该 PV 绑定到 PVC。否则,用户总会得到他们所请求的存储,但是容量可能超出要求 的数量。一旦 PV 和 PVC 绑定后, PersistentVolumeClaim 绑定是排他性的,不管它们是如何绑定的。 PVC 跟 PV 绑定是一对一的映射
PVC 保护的目的是确保由 pod 正在使用的 PVC 不会从系统中移除,因为如果被移除的话可能会导致数据丢失 当启用PVC 保护 alpha 功能时,如果用户删除了一个 pod 正在使用的 PVC,则该 PVC 不会被立即删除。PVC 的 删除将被推迟,直到 PVC 不再被任何 pod 使用
PersistentVolume 类型以插件形式实现。Kubernetes 目前支持以下插件类型:
持久卷演示代码
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv0003
spec:
capacity:
storage: 5Gi
volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
storageClassName: slow
mountOptions:
- hard
- nfsvers=4.1
nfs:
path: /tmp
server: 172.17.0.2
PersistentVolume 可以以资源提供者支持的任何方式挂载到主机上。如下表所示,供应商具有不同的功能,每个 PV 的访问模式都将被设置为该卷支持的特定模式。例如,NFS 可以支持多个读/写客户端,但特定的 NFS PV 可能 以只读方式导出到服务器上。每个 PV 都有一套自己的用来描述特定功能的访问模式
ReadWriteOnce——该卷可以被单个节点以读/写模式挂载
ReadOnlyMany——该卷可以被多个节点以只读模式挂载
ReadWriteMany——该卷可以被多个节点以读/写模式挂载
在命令行中,访问模式缩写为:
Retain(保留)——手动回收
Recycle(回收)——基本擦除( rm -rf /thevolume/* )
Delete(删除)——关联的存储资产(例如 AWS EBS、GCE PD、Azure Disk 和 OpenStack Cinder 卷) 将被删除
当前,只有 NFS 和 HostPath 支持回收策略。AWS EBS、GCE PD、Azure Disk 和 Cinder 卷支持删除策略
卷可以处于以下的某种状态:
Available(可用)——一块空闲资源还没有被任何声明绑定
Bound(已绑定)——卷已经被声明绑定
Released(已释放)——声明被删除,但是资源还未被集群重新声明
Failed(失败)——该卷的自动回收失败
命令行会显示绑定到 PV 的 PVC 的名称
yum install -y nfs-common nfs-utils rpcbind
mkdir /nfsdata
chmod 666 /nfsdata
chown nfsnobody /nfsdata
cat /etc/exports
/nfsdata *(rw,no_root_squash,no_all_squash,sync)
systemctl start rpcbind
systemctl start nfs
apiVersion: v1
kind: PersistentVolume
metadata:
name: nfspv1
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
storageClassName: nfs
nfs:
path: /data/nfs
server: 10.66.66.10
apiVersion: v1
kind: Service
metadata:
name: nginx
labels:
app: nginx
spec:
ports:
- port: 80
name: web
clusterIP: None
selector:
app: nginx
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: web
spec:
selector:
matchLabels:
app: nginx
serviceName: "nginx"
replicas: 3
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: k8s.gcr.io/nginx-slim:0.8
ports:
- containerPort: 80
name: web
volumeMounts:
- name: www
mountPath: /usr/share/nginx/html
volumeClaimTemplates:
- metadata:
name: www
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: "nfs"
resources:
requests:
storage: 1Gi
serviceName: nginx
匹配 Pod name ( 网络标识 ) 的模式为: ( s t a t e f u l s e t 名 称 ) − (statefulset名称)- (statefulset名称)−(序号),比如上面的示例:web-0,web-1, web-2 StatefulSet 为每个 Pod 副本创建了一个 DNS 域名,这个域名的格式为: $(podname).(headless server name),也就意味着服务间是通过Pod域名来通信而非 Pod IP,因为当Pod所在Node发生故障时, Pod 会 被飘移到其它 Node 上,Pod IP 会发生变化,但是 Pod 域名不会有变化
StatefulSet 使用 Headless 服务来控制 Pod 的域名,这个域名的 FQDN 为: ( s e r v i c e n a m e ) . (service name). (servicename).(namespace).svc.cluster.local,其中,“cluster.local” 指的是集群的域名
根据 volumeClaimTemplates,为每个 Pod 创建一个 pvc,pvc 的命名规则匹配模式: (volumeClaimTemplates.name)-(pod_name),比如上面的 volumeMounts.name=www, Pod name=web-[0-2],因此创建出来的 PVC 是 www-web-0、www-web-1、www-web-2
删除 Pod 不会删除其 pvc,手动删除 pvc 将自动释放 pv
Statefulset的启停顺序:
有序部署:部署StatefulSet时,如果有多个Pod副本,它们会被顺序地创建(从0到N-1)并且,在下一个 Pod运行之前所有之前的Pod必须都是Running和Ready状态。
有序删除:当Pod被删除时,它们被终止的顺序是从N-1到0。
有序扩展:当对Pod执行扩展操作时,与部署一样,它前面的Pod必须都处于Running和Ready状态。
StatefulSet使用场景:
稳定的持久化存储,即Pod重新调度后还是能访问到相同的持久化数据,基于 PVC 来实现。
稳定的网络标识符,即 Pod 重新调度后其 PodName 和 HostName 不变。
有序部署,有序扩展,基于 init containers 来实现。
有序收缩。