- dataframe的head方法_数据分析——DataFrame基本操作
weixin_39741459
三DataFrameDataFrame类型由共用相同索引的一组列组成,可以看成是Series的容器,其结构既有行索引,又有列索引的二维数组·行索引:index·列索引:columns3.1DataFrame基本操作:DataFrame创建:可以由以下类型进行创建:•二维ndarray对象•由一维ndarray、列表、字典、元组或Series构成的字典•Series类型•其他的DataFrame类型
- tdengine使用感受
玖五二七
tdenginetdengineTSDB时序数据库
TDenigne是一款现代的时序(TimeSeriesDatabase)数据库,之前在做项目的时候都是用SQL数据库去存历史日志信息的。直到一个项目需要对设备的历史记录落库。这是时序数据库使用的典型场景,虽然之前一直用SQL数据库,但是用过都知道,在数据量大的时候会导致分页卡顿,甚至是无法分页。这个项目使用时序数据库再合适不过了1它的历史数据是不会修改的2设备数量多,种类单一3种类后期可以扩展4需
- pandas库 DataFrame的常见操作
目录一.Pandas库的核心特点与应用场景1.表格数据处理2.与NumPy的区别3.数据转换二.Pandas与OpenPyXl的对比三.DataFrame与Series数据类型四.DataFrame常用操作排序:df.sort_values(by='列名',ascending=False)按指定列降序排序,整行数据同步调整,当参数值为ture时则为升序排序或默认升序排序数据替换:df['列名'].
- 数据分析利器:Pandas数据处理实战指南
程序员Bears
Python全栈成长笔记数据分析pandas数据挖掘
一、Pandas简介:数据分析的瑞士军刀Pandas是Python数据分析的核心库,它提供了两种主要数据结构:Series:一维带标签数组DataFrame:二维表格型数据结构(类似Excel表格)importpandasaspd#创建示例DataFramedata={'姓名':['张三','李四','王五'],'年龄':[25,30,28],'城市':['北京','上海','广州']}df=pd
- telegraf简介
alankuo
人工智能
Telegraf是一款由InfluxData开发的开源数据采集工具,专为时序数据(TimeSeriesData)设计,广泛用于监控系统、设备、应用程序的性能指标和运行状态。它具有轻量、灵活、插件丰富等特点,是时序数据监控生态(如TICKStack:Telegraf+InfluxDB+Chronograf+Kapacitor)中的核心组件之一。核心特点多源采集:支持从多种数据源(系统、数据库、应用、
- pandas 的数据类型简单介绍-Series 与 DataFrame
江南野栀子
#Python数据分析pythonpandas数据分析
目录1.Series1.1Series定义1.2Series构造2.DataFrame2.1DataFrame定义2.2DataFrame构造2.2.1使用pandas.DataFrame函数2.2.2使用pandas.DataFrame.from_dict函数2.2.3使用pandas.DataFrame.from_records函数2.2.4从csv、Excel、txt、mysql等等处获得数
- 折线图的构成
科学的发展-只不过是读大自然写的代码
#c++ubuntu开发ubuntulinux
折线图的构成(以QtCharts模块为例)折线图是一种用于展示数据变化趋势的可视化图表,其核心构成要素在QtCharts模块中通过特定类和配置实现。以下是折线图的详细构成及Qt中的实现方法:1.数据系列(Series)作用:表示折线图的数据点及其连接线。Qt实现:QLineSeries类:用于创建折线系列,通过append(x,y)添加数据点。QLineSeries*series=newQLine
- 中国计算机学会(CCF)推荐学术会议-A(人工智能):AAAI 2026
爱思德学术
人工智能机器学习自然语言处理数据挖掘
AAAI2026ThepurposeoftheAAAIconferenceseriesistopromoteresearchinArtificialIntelligence(AI)andfosterscientificexchangebetweenresearchers,practitioners,scientists,students,andengineersacrosstheentiretyo
- Pandas入门秘籍:玩转数据分析的瑞士军刀![特殊字符]
MicroTeamers
pandas数据分析数据挖掘
文章目录为什么Pandas这么?(数据工作者的血泪史)数据工作者的三大痛点:核心武器:DataFrame与Series(超级重要!!)Series:一维数据王者DataFrame:二维表格核武器实战五大神技(职场生存必备)✨神技1:数据清洗魔法⚡神技2:条件筛选闪电战神技3:分组统计大杀器神技4:数据变形术神技5:格式通吃王避坑指南(血泪教训!!)新手常踩的三大雷区:性能优化秘籍(处理百万级数据)
- Python与数据分析库Pandas进阶
Python与数据分析库Pandas进阶一、开篇:Pandas的魅力1.1数据分析:不仅仅是数字游戏1.2为什么选择Pandas二、基础篇:掌握Pandas的核心2.1数据结构:Series与DataFrame2.2数据读取与存储2.3数据清洗:让数据更加干净三、进阶篇:Pandas的高级功能3.1数据重塑:让数据更加符合需求3.2数据合并:拼接与连接3.3数据分组与聚合:挖掘数据深层含义四、实战
- 学习 Pandas 库:Series 与 DataFrame 核心操作指南
山烛
学习pandaspython深度学习机器学习
目录一、Series:一维数据结构1.创建Series2.Series的属性3.Series的查询操作4.Series的修改与删除5.重置索引二、DataFrame:二维数据结构1.创建DataFrame2.DataFrame的属性3.DataFrame的查询操作(1)直接访问(2)loc方法(标签索引)(3)iloc方法(位置索引)4.DataFrame的修改操作(1)修改行列名(2)增加行列(
- Python进阶知识之pandas库
AI 嗯啦
pandaspython开发语言
目录一、Series:一维带标签的数组二、DataFrame:二维表格型数据结构三、Series的核心操作四、DataFrame的核心操作五、索引的特殊用法六、loc与iloc:DataFrame的高级查询七、综合案例一、Series:一维带标签的数组Series是pandas中最基础的一维数据结构,由数据值和索引(index)组成,可理解为“带标签的列表”。核心特点:可通过索引或位置快速访问、修
- Python进阶第三方库之Pandas
paid槮
pythonpandas开发语言
了解Numpy与Pandas的不同说明Pandas的Series与Dataframe两种结构的区别了解Pandas的MultiIndex与panel结构应用Pandas实现基本数据操作应用Pandas实现数据的合并应用crosstab和pivot_table实现交叉表与透视表应用groupby和聚合函数实现数据的分组与聚合了解Pandas的plot画图功能应用Pandas实现数据的读取和存储Pan
- 2025.7.22 测试 总结
Fromnfls2025SummerCampS+题目后的括号(a,b)(a,b)(a,b)表示(难度,考场思考率)目录T3矩形坑洞覆盖(easy+,80%)T4ABBA替换(mid-,60%)T5[POI2005]SAM-ToyCars(mid-,95%)T7[SCOI2006]zh_tree(mid+,40%)T8CF627DPreorderTest(mid+,5%)总结T3矩形坑洞覆盖(eas
- 20250620-`Pandas.cut` 的使用注意事项
陈晨辰熟稳重
笔记pandascut分箱bin
Pandas.cut的使用注意事项pd.cut是Pandas提供的一个非常实用的函数,用于将数值数据分割成离散的区间(bins)。它常用于数据分桶(binning)、分类或离散化操作。参数说明1.x:Any描述:输入数据,可以是PandasSeries、列表或数组。示例:importpandasaspdx=[1,2,3,4,5,6,7,8,9,10]2.bins:Any描述:定义分割点的边界。长度
- 时序数据库主流产品概览
时序数据说
时序数据库数据库物联网iotdb大数据
时序数据库(TimeSeriesDatabase,TSDB)是专为处理时间序列数据优化的数据库系统,近年来随着物联网(IoT)、金融科技、工业互联网等领域的快速发展而备受关注。本文将介绍当前主流的时序数据库产品。一、时序数据库概述时序数据是带时间戳记录的数据点序列,具有以下特点:数据时间属性强数据通常为追加写入近期数据访问频率高于历史数据数据量通常非常庞大,需要高效的压缩技术时序数据库针对这些特点
- Python关于pandas的基础知识
WeiJingYu.
pythonpandas开发语言
一.扫盲(一)、pandas是什么pandas是Python的一个第三方数据处理库,它提供了高效、灵活的数据结构(如Series和DataFrame),能方便地对结构化数据进行清洗、转换、分析和处理。(二)、pandas与NumPy的关系NumPy是Python中用于科学计算的基础库,主要用于存储和处理数值型数组。但它有一个局限,就是不能直接存储和处理字符串等非数值类型的数据。而pandas是在N
- 大白转战小荧幕——《超能陆战队第1季》
妙介子
大白转战小荧幕——《超能陆战队第1季》今天聊聊美剧《超能陆战队第1季》。片名BigHero6:TheSeriesSeason1(2017),别名超能陆战队动画剧。迪斯尼的《超能陆战队》大获成功后,电视剧版、漫画统统安排上了。2017年电视剧版《超能陆战队》终于上映,深受观众们喜爱的大白也重新和大家相遇。当初《超能陆战队》能够获得奥斯卡最佳动画长片,除了故事完成度很高外,还有一项的视觉重要技术也是功
- 工业物联网中的时序数据库应用
1.引言工业物联网(IndustrialInternetofThings,IIoT)通过传感器、边缘计算和云计算等技术,实现设备数据的实时采集、存储与分析,以提高生产效率、预测设备故障并优化资源管理。然而,IIoT环境通常涉及高频、海量、多源异构的时序数据,传统数据库(如MySQL、Oracle)难以满足其高吞吐写入、低延迟查询和高效存储的需求。时序数据库(Time-SeriesDatabase,
- 时序数据库:数据库领域的未来之星
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库时序数据库ai
时序数据库:数据库领域的未来之星关键词:时序数据库、时间序列数据、物联网、大数据分析、数据库优化、TSDB、实时数据处理摘要:本文深入探讨了时序数据库(TimeSeriesDatabase,TSDB)这一新兴数据库技术。我们将从基本概念入手,分析时序数据库的核心原理和架构设计,详细讲解其特有的数据模型和存储机制。通过实际代码示例展示如何使用主流时序数据库处理时间序列数据,并探讨其在物联网、金融科技
- DevExpress ChartControl
henreash
前端javascript开发语言
1创建x轴按秒的曲线(chartControl1.DiagramasXYDiagram).EnableAxisXZooming=true;(chartControl1.DiagramasXYDiagram).EnableAxisXScrolling=true;chartControl1.Series.Clear();varseries=newDevExpress.XtraCharts.Series
- Echarts柱状图series下去掉无数据的柱子,没数据不让其柱子占位置 , echarts图表,多个柱子其中数据为0时不占位
吃西瓜不吐籽_
echartsjavascript前端
echarts图表,多个柱子其中数据为0时不占位修改前(中间柱子没数据但是还是会占位置)修改后(中间柱子没数据情况下会自动调整)思路:使用自定义柱子来做import*asechartsfrom'echarts';varchartDom=document.getElementById('main');varmyChart=echarts.init(chartDom);varoption;lettuf
- 时序数据库选型全指南:为什么越来越多企业选择IoTDB?
Loving_enjoy
计算机学科论文创新点机器学习facebook课程设计经验分享
>在工业物联网爆发式增长的今天,一台风力发电机每秒产生200+数据点,一座智慧工厂每天新增10亿级数据记录——传统数据库已无法承受时序数据的洪流。###时序数据:数字时代的脉搏时序数据(Time-SeriesData)是以时间戳为索引的连续数据流,广泛存在于物联网设备监控、金融交易记录、应用性能监测等场景。这类数据具有三大特性:-**海量性**:单个设备每秒可产生多条数据-**时效性**:新数据价
- 【解决Qt报warning: ‘setAxisX‘ is deprecated遇到的问题】
解决Qt报warning:‘setAxisX‘isdeprecated遇到的问题背景:移植老代码时,报如题警告。老代码:m_input_chart->setAxisY(axisY,input_series);然后修改为:m_input_chart->addAxis(axisY,Qt::AlignLeft);input_series->attachAxis(axisY);运行之后没有警告了,但是坐标
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- React 中使用 ECharts 报错 "series not exists"
问题现象在React项目中使用ECharts时,控制台报错:seriesnotexists.Legenddatashouldbesamewithseriesnameordataname但已确认legend.data与series.name完全匹配,代码逻辑看似正确。问题根源未正确注册ECharts图表组件。自ECharts5起,官方采用按需引入(tree-shaking)的模块化设计,需显式注册图
- Python 强化学习算法实用指南(三)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第十一章:理解黑盒优化算法在前几章中,我们研究了强化学习(RL)算法,从基于价值的方法到基于策略的方法,以及从无模型方法到基于模型的方法。在本章中,我们将提供另一种解决序列任务的方法,那就是使用一类黑盒算法——进化算法(EA)。EAs由进化机制
- pandas学习笔记
kara_486
pandas学习笔记
pandas是python中一个性能强大的数据处理库,能进行复杂的数据处理。pandas的数据结构分为三种类型,分别为series,DataFrame和index,对于初学者而言,series和DataFrame这两种结构最为重要。下面作者将重点介绍series和DataFrame这两部分。series的介绍series按照作者的目前的理解是pandas库中最基础的组成部分,seriers是由索引
- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- Pandas 学习(数学建模篇)
停走的风
数学建模pandas学习
今天学习数学建模2023年C篇(228)优秀论文2023高教社杯全国大学生数学建模竞赛C题论文展示(C228)-2023C题论文-中国大学生在线一.pd.DataFramepd.DataFrame()是pandas库中用于创建二维表格数据结构(DataFrame)的核心函数。它的作用是将各种格式的数据(如字典、列表、Series等)转换为带有行索引和列标签的表格形式,便于数据处理和分析.impor
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D