pytorch + visdom CNN处理自建图片数据集

环境

系统:win10
cpu:i7-6700HQ
gpu:gtx965m
python : 3.6
pytorch :0.3

数据下载

来源自Sasank Chilamkurthy 的教程; 数据:下载链接。
下载后解压放到项目根目录:
pytorch + visdom CNN处理自建图片数据集_第1张图片
数据集为用来分类 蚂蚁和蜜蜂。有大约120个训练图像,每个类有75个验证图像。

数据导入

可以使用 torchvision.datasets.ImageFolder(root,transforms) 模块 可以将 图片转换为 tensor。
先定义transform:

data_transforms = {
    'train': transforms.Compose([
        # 随机切成224x224 大小图片 统一图片格式
        transforms.RandomResizedCrop(224),
        # 图像翻转
        transforms.RandomHorizontalFlip(),
        # totensor 归一化(0,255) >> (0,1)   normalize   channel=(channel-mean)/std
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ]),
    "val" : transforms.Compose([
        # 图片大小缩放 统一图片格式
        transforms.Resize(256),
        # 以中心裁剪
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
}

导入,加载数据:

data_dir = './hymenoptera_data'
# trans data
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# load data
data_loaders = {x: DataLoader(image_datasets[x], batch_size=BATCH_SIZE, shuffle=True) for x in ['train', 'val']}

data_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
print(data_sizes, class_names)
{'train': 244, 'val': 153} ['ants', 'bees']

训练集 244图片 , 测试集153图片 。

可视化部分图片看看,由于visdom支持tensor输入 ,不用换成numpy,直接用tensor计算即可 :

inputs, classes = next(iter(data_loaders['val']))

out = torchvision.utils.make_grid(inputs)
inp = torch.transpose(out, 0, 2)
mean = torch.FloatTensor([0.485, 0.456, 0.406])
std = torch.FloatTensor([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = torch.transpose(inp, 0, 2)
viz.images(inp)

pytorch + visdom CNN处理自建图片数据集_第2张图片

创建CNN

net 根据上一篇的处理cifar10的改了一下规格:

class CNN(nn.Module):
    def __init__(self, in_dim, n_class):
        super(CNN, self).__init__()
        self.cnn = nn.Sequential(
            nn.BatchNorm2d(in_dim),
            nn.ReLU(True),
            nn.Conv2d(in_dim, 16, 7), # 224 >> 218
            nn.BatchNorm2d(16),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),  # 218 >> 109
            nn.ReLU(True),
            nn.Conv2d(16, 32, 5),  # 105
            nn.BatchNorm2d(32),
            nn.ReLU(True),
            nn.Conv2d(32, 64, 5),  # 101
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.Conv2d(64, 64, 3, 1, 1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.MaxPool2d(2, 2),  # 101 >> 50
            nn.Conv2d(64, 128, 3, 1, 1),  #
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.MaxPool2d(3),  # 50 >> 16
        )
        self.fc = nn.Sequential(
            nn.Linear(128*16*16, 120),
            nn.BatchNorm1d(120),
            nn.ReLU(True),
            nn.Linear(120, n_class))
    def forward(self, x):
        out = self.cnn(x)
        out = self.fc(out.view(-1, 128*16*16))
        return out

# 输入3层rgb ,输出 分类 2       
model = CNN(3, 2)

loss,优化函数:

line = viz.line(Y=np.arange(10))
loss_f = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

参数:

BATCH_SIZE = 4
LR = 0.001
EPOCHS = 10

运行 10个 epoch 看看:

[9/10] train_loss:0.650|train_acc:0.639|test_loss:0.621|test_acc0.706
[10/10] train_loss:0.645|train_acc:0.627|test_loss:0.654|test_acc0.686
Training complete in 1m 16s
Best val Acc: 0.712418

pytorch + visdom CNN处理自建图片数据集_第3张图片

运行 20个看看:

[19/20] train_loss:0.592|train_acc:0.701|test_loss:0.563|test_acc0.712
[20/20] train_loss:0.564|train_acc:0.721|test_loss:0.571|test_acc0.706
Training complete in 2m 30s
Best val Acc: 0.745098

pytorch + visdom CNN处理自建图片数据集_第4张图片

准确率比较低:只有74.5%

我们使用models 里的 resnet18 运行 10个epoch:

model = torchvision.models.resnet18(True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
[9/10] train_loss:0.621|train_acc:0.652|test_loss:0.588|test_acc0.667
[10/10] train_loss:0.610|train_acc:0.680|test_loss:0.561|test_acc0.667
Training complete in 1m 24s
Best val Acc: 0.686275

效果也很一般,想要短时间内就训练出效果很好的models,我们可以下载训练好的state,在此基础上训练:

model = torchvision.models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
[9/10] train_loss:0.308|train_acc:0.877|test_loss:0.160|test_acc0.941
[10/10] train_loss:0.267|train_acc:0.885|test_loss:0.148|test_acc0.954
Training complete in 1m 25s
Best val Acc: 0.954248

10个epoch直接的到95%的准确率。

pytorch + visdom CNN处理自建图片数据集_第5张图片

代码在这。

你可能感兴趣的:(可视化,机器学习,pytorch+visdom)