- Python 机器学习实战:基于 Scikit-learn
大力出奇迹985
python机器学习scikit-learn
本文围绕《Python机器学习实战:基于Scikit-learn的项目开发》展开,先介绍Scikit-learn库的基础特性与优势,再阐述机器学习项目开发的完整流程,包括数据收集与预处理、模型选择与训练、评估与优化等。通过具体实战案例,展示如何运用Scikit-learn解决分类、回归等问题,最后总结学习要点与未来学习方向,为读者提供系统的实战指导,助力快速掌握基于Scikit-learn的机器学
- 《机器学习实战》笔记(03):决策树
巨輪
机器学习机器学习决策树
决策树kNN算法可以完成很多分类任务,但是它最大的缺点就是给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解决策树的构造优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。创建分支的伪代码函数createBranch()Checkifeveryiteminthedatasetisinthesa
- 机器学习实战笔记(四):决策树(Python3 实现)
max_bay
机器学习实战笔记机器学习实战决策树python
1决策树的构造1.1决策树的特点优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集。这些数据子集会分
- 深入TA-Lib:量化技术指标详解
深入TA-Lib:量化技术指标详解本文系统讲解TA-Lib技术指标分析,涵盖基础、数据处理、趋势与动量指标、均量线、布林线等,并结合Python代码与大数据、机器学习实战案例,助力读者掌握量化交易实战技巧。本文系统梳理了TA-Lib技术指标分析的核心内容,包括TA-Lib基础、数据处理、趋势与动量指标、均量线、布林线等关键技术指标分析方法,并结合Python代码示例与大数据、机器学习的融合实战案例
- 板凳-------Mysql cookbook学习 (十一--------4)
唐宇迪机器学习实战课程笔记https://blog.csdn.net/weixin_54338498/article/details/128818007?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ECtr-1-12881
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- Python机器学习实战:推荐系统的原理与实现方法
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:推荐系统的原理与实现方法1.背景介绍1.1问题的由来在当今数字化时代,推荐系统已成为电子商务、媒体流媒体平台、社交媒体以及在线购物网站的核心组件之一。推荐系统旨在根据用户的历史行为、偏好以及社会关系等因素,为用户提供个性化的内容或商品建议,从而提高用户体验、增加用户粘性,并提升业务转化率。1.2研究现状随着大数据和深度学习技术的快速发展,推荐系统正从基于规则的简单过滤模型
- 机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现
微学AI
机器学习实战项目机器学习数学建模人工智能
大家好,我是微学AI,今天给大家介绍一下机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现。文章目录一、项目介绍二、项目背景三、数学原理与算法分析动态规划模型遗传算法设计编码方案适应度函数约束处理算法参数能量消耗模型一泵房能耗二泵房能耗效率计算模型四、系统特性与创新点代码实现基于python实现完整代码五、应用价值与扩展方向六、结论一、项目介绍本项目是一个基于动态规划和遗传算法的水泵调
- 机器学习实战---书中谬误讨论
奔跑的石头_
机器学习机器学习numpy
关注公众号“码字读书会”,了解最新消息。5.2.3节首先要把5.2.2节内容做了,不然得不到回归系数weights值。即dataArr,labelMat=logRegres.loadDataSet()logRegres.gradAscent(dataArr,labelMat)reload(logRegres)logRegres.plotBestFit(weights.getA())此处画图做拟合曲
- Python机器学习实战:使用Pandas进行数据预处理与分析
AI天才研究院
AIAgent应用开发计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:使用Pandas进行数据预处理与分析1.背景介绍在机器学习和数据科学领域中,数据预处理是一个至关重要的步骤。原始数据通常存在噪声、缺失值、异常值等问题,直接将其输入机器学习模型会导致模型性能下降。因此,对数据进行清洗、转换和规范化等预处理操作是必不可少的。Pandas是Python中广泛使用的数据分析库,提供了高性能、易于使用的数据结构和数据分析工具。它可以高效地处理结构
- Python机器学习实战:智能聊天机器人的构建与优化
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:智能聊天机器人的构建与优化作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能与聊天机器人的发展历程1.1.1人工智能的起源与发展人工智能(ArtificialIntelligence,AI)的起源可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。随后,人工智能经历了几次高潮和低谷,期间涌现出许多重要的理论和算法,例如符号主义、连接主义、专家系统
- 分享全国数字人才技能提升师资培训班 第五期邀请函
泰迪智能科技01
人工智能人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 分享全国数字人才技能提升师资培训班 第五期
泰迪智能科技01
人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- python3源代码_机器学习实战源代码python3
weixin_39955781
python3源代码
机器学习实战源代码python3\machinelearninginaction\.git\COMMIT_EDITMSG机器学习实战源代码python3\machinelearninginaction\.git\config机器学习实战源代码python3\machinelearninginaction\.git\description机器学习实战源代码python3\machinelearnin
- Python机器学习实战:分布式机器学习框架Dask的入门与实战
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:分布式机器学习框架Dask的入门与实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,数据量的爆炸式增长使得传统的单机处理方式逐渐显得力不从心。无论是数据预处理、特征工程还是模型训练,单机环境下的计算资源和内存限制都成为了瓶颈。为了应对这些挑战,分布式计算框架应运而生。Das
- 【机器学习实战】监督学习:使用 Scikit-learn 库训练一个房价预测模型
phenix_01
机器学习学习scikit-learn
一、引言在机器学习领域,监督学习是一种通过已有标注数据训练模型,从而对新数据进行预测的重要方法。房价预测作为回归问题的典型应用,在房地产分析、投资决策等场景中具有重要价值。本文将基于Scikit-learn库,完整演示从数据准备到模型评估的全流程,带领读者掌握房价预测模型的构建方法。二、数据准备:从Kaggle获取数据集本文使用Kaggle上的经典波士顿房价数据集(BostonHousingDat
- 机器学习实战02:学生成绩预测与可视化分析
梦弦18
机器学习信息可视化
目录一、项目背景二、数据读取与初步处理三、数据可视化分析(一)相关性矩阵热图(二)父母教育水平与成绩关系(三)种族与成绩关系(四)测试准备课程与成绩关系(五)其他分析四、机器学习模型构建与评估(一)数据预处理(二)模型训练与评估五、总结六、全代码七.数据集callme在教育领域,了解影响学生成绩的因素并对成绩进行预测,对提升教学质量、制定个性化学习方案具有重要意义。本文将通过一个机器学习实战项目,
- Python机器学习实战:掌握NumPy的高效数据操作
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
NumPy,Python,机器学习,数据操作,数组,向量,矩阵,线性代数,科学计算1.背景介绍在机器学习领域,数据是至关重要的资源。高效、准确地处理和操作数据是机器学习模型训练和应用的基础。NumPy(NumericalPython)作为Python生态系统中强大的数值计算库,为机器学习提供了高效的数据结构和操作工具。NumPy的核心是ndarray(n-dimensionalarray)数据结构
- 机器学习实战步骤与案例
enyp80
机器学习
机器学习实战需要结合理论和实践,以下是一个清晰的实战步骤指南,涵盖关键工具、常见任务示例以及避坑建议,帮助你快速上手:一、机器学习实战核心步骤明确问题与数据准备任务类型:分类、回归、聚类、强化学习?数据来源:Kaggle、UCI、公开API、爬虫或业务数据库。数据格式:结构化数据(CSV/SQL)或非结构化数据(图片/文本)。工具推荐:数据清洗:Pandas、NumPy可视化:Matplotlib
- 机器学习实战:6种数据集划分方法详解与代码实现
慕婉0307
机器学习机器学习人工智能深度学习数据集划分
在机器学习项目中,合理划分数据集是模型开发的关键第一步。本文将全面介绍6种常见数据格式的划分方法,并附完整Python代码示例,帮助初学者掌握这一核心技能。一、数据集划分基础函数1.核心函数:train_test_splitfromsklearn.model_selectionimporttrain_test_split#基本用法X_train,X_test,y_train,y_test=trai
- 机器学习实战:鸢尾花分类
学术乙方
Python机器学习分类人工智能
项目目标使用经典的鸢尾花数据集(IrisDataset),通过支持向量机(SVM)算法训练一个分类模型,能够根据花瓣和萼片的测量数据预测鸢尾花的种类。环境准备Python#需要安装的库(在终端运行)pipinstallnumpypandasmatplotlibscikit-learn完整代码实现#1.导入必要的库importnumpyasnpimportpandasaspdfromsklearni
- 机器学习实战:以鸢尾花数据集分类问题为例
Tech Synapse
机器学习分类人工智能SVMscikit-learn鸢尾花数据集
在当今数据驱动的时代,机器学习已成为解决复杂问题的重要工具。本文将通过一个具体的分类问题——鸢尾花数据集(IrisDataset)的分类,展示如何在实际项目中应用机器学习。我们将使用Python编程语言,并借助流行的机器学习库scikit-learn来实现这一目标。文章将详细介绍数据预处理、模型选择、训练、评估以及预测等步骤,并提供完整且可直接运行的代码示例。一、项目背景与数据集介绍鸢尾花数据集是
- 从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南
灏瀚星空
python机器学习开发语言学习人工智能算法金融
从零搭建量化交易工具链:Python数据处理、策略回测与机器学习实战指南引言在算法交易席卷全球金融市场的今天,搭建一套高可用的量化工具链已成为开发者掘金Alpha的核心竞争力。然而,面对庞杂的技术组件——从海量数据的清洗对齐、策略逻辑的回测验证,到机器学习模型的实盘部署——许多开发者陷入困境:Pandas处理Tick数据内存爆炸怎么办?回测曲线完美但实盘表现惨淡如何归因?深度学习模型预测准确却无法
- 机器学习实战:PyTorch 与 Sklearn 线性回归模型大对决
#guiyin11
机器学习pytorchsklearn
一、引言在机器学习领域,模型的构建和训练依赖于各种工具和框架。PyTorch和Sklearn作为其中的佼佼者,在实现线性回归模型时各有千秋。深入了解它们的差异和优势,对提升模型性能和开发效率意义重大。本文将全面剖析这两个框架在构建和训练线性回归模型方面的特点。二、实验原理(一)线性回归基本原理线性回归旨在寻找输入特征X与输出标签y的线性关系,通过公式y=Xθ+ϵ来描述。其中,θ是待估参数,ϵ为随机
- Python机器学习实战:机器学习在金融风险评估中的应用
AI天才研究院
AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:机器学习在金融风险评估中的应用1.背景介绍金融风险评估是金融行业中至关重要的一环。随着数据量的爆炸性增长和计算能力的提升,机器学习在金融风险评估中的应用变得越来越普遍。通过机器学习算法,我们可以更准确地预测违约风险、市场风险和操作风险,从而帮助金融机构做出更明智的决策。2.核心概念与联系2.1机器学习概述机器学习是一种通过数据训练模型,使其能够自动改进和预测的技术。它主要
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。