from PIL import Image
from torchvision import transforms as tfs
im = Image.open('../input/cat.jpg')
im
print('before scale, shape: {}'.format(im.size))
new_im = tfs.Resize((100,200))(im)
print('after scale, shape: {}'.format(new_im.size))
new_im
before scale, shape: (121, 121)
after scale, shape: (200, 100)
# 随机裁剪
random_im = tfs.RandomCrop((60, 60))(im)
random_im
# 中心裁剪
center_im = tfs.CenterCrop((60, 60))(im)
center_im
horizontal_im = tfs.RandomHorizontalFlip()(im)
horizontal_im
vertical_im = tfs.RandomVerticalFlip()(im)
vertical_im
rotation_im = tfs.RandomRotation(45)(im)
rotation_im
bright_im = tfs.ColorJitter(brightness=1)(im) #随机在0~2之间变化,1
bright_im
contrast_im = tfs.ColorJitter(contrast=1)(im) #随机在0~2之间变化,
contrast_im
color_im = tfs.ColorJitter(hue=0.5)(im) # 随机从 -0.5 ~ 0.5 之间变化
color_im
im_aug = tfs.Compose([
tfs.Resize(120),
tfs.RandomHorizontalFlip(),
tfs.RandomCrop(96),
tfs.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5)
])
import matplotlib.pyplot as plt
%matplotlib inline
nrows = 3
ncols = 3
figsize = (8, 8)
fig, figs = plt.subplots(nrows, ncols, figsize=figsize)
for i in range(nrows):
for j in range(ncols):
figs[i][j].imshow(im_aug(im))
figs[i][j].axes.get_xaxis().set_visible(False)
figs[i][j].axes.get_yaxis().set_visible(False)
plt.show()
def train_tf(x):
im_aug = tfs.Compose([
tfs.Resize(120),
tfs.RandomHorizontalFlip(),
tfs.RandomCrop(96),
tfs.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),tfs.ToTensor(),
tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
x = im_aug(x)
return x
def test_tf(x):
im_aug = tfs.Compose([
tfs.Resize(96),
tfs.ToTensor(),
tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
x = im_aug(x)
return x
训练过程省略。。。。。。