Spark SQL

1. 背景

Spark 1.0版本开始,推出了Spark SQL。

其实最早使用的,都是Hadoop自己的Hive查询引擎;但是后来Spark提供了Shark;再后来Shark被淘汰,推出了Spark
SQL。Shark的性能比Hive就要高出一个数量级,而Spark SQL的性能又比Shark高出一个数量级。

最早来说,Hive的诞生,主要是因为要让那些不熟悉Java,无法深入进行MapReduce编程的数据分析师,能够使用他们熟悉的关系型数据库的SQL模型,来操作HDFS上的数据。因此推出了Hive。Hive底层基于MapReduce实现SQL功能,能够让数据分析人员,以及数据开发人员,方便的使用Hive进行数据仓库的建模和建设,然后使用SQL模型针对数据仓库中的数据进行统计和分析。但是Hive有个致命的缺陷,就是它的底层基于MapReduce,而MapReduce的shuffle又是基于磁盘的,因此导致Hive的性能异常低下。进场出现复杂的SQL
ETL,要运行数个小时,甚至数十个小时的情况。

后来,Spark推出了Shark,Shark与Hive实际上还是紧密关联的,Shark底层很多东西还是依赖于Hive,但是修改了内存管理、物理计划、执行三个模块,底层使用Spark的基于内存的计算模型,从而让性能比Hive提升了数倍到上百倍。

然而,Shark还是它的问题所在,Shark底层依赖了Hive的语法解析器、查询优化器等组件,因此对于其性能的提升还是造成了制约。所以后来Spark团队决定,完全抛弃Shark,推出了全新的Spark
SQL项目。Spark SQL就不只是针对Hive中的数据了,而且可以支持其他很多数据源的查询。

2. Spark SQL特点

Spark SQL的特点
1、支持多种数据源:Hive、RDD、Parquet、JSON、JDBC等。
2、多种性能优化技术:in-memory columnar storage、byte-code generation、cost model动态评估等。
3、组件扩展性:对于SQL的语法解析器、分析器以及优化器,用户都可以自己重新开发,并且动态扩展。

在2014年6月1日的时候,Spark宣布了不再开发Shark,全面转向Spark SQL的开发。

Spark SQL的性能比Shark来说,又有了数倍的提升。

3. 性能优化技术

Spark SQL的性能优化技术简介
1、内存列存储(in-memory columnar storage)
内存列存储意味着,Spark SQL的数据,不是使用Java对象的方式来进行存储,而是使用面向列的内存存储的方式来进行存储。也就是说,每一列,作为一个数据存储的单位。从而大大优化了内存使用的效率。采用了内存列存储之后,减少了对内存的消耗,也就避免了gc大量数据的性能开销。
2、字节码生成技术(byte-code generation)
Spark SQL在其catalyst模块的expressions中增加了codegen模块,对于SQL语句中的计算表达式,比如select num + num from t这种的sql,就可以使用动态字节码生成技术来优化其性能。
3、Scala代码编写的优化
对于Scala代码编写中,可能会造成较大性能开销的地方,自己重写,使用更加复杂的方式,来获取更好的性能。比如Option样例类、for循环、map/filter/foreach等高阶函数,以及不可变对象,都改成了用null、while循环等来实现,并且重用可变的对象。

4. Spark SQL与Hive on Spark

Hive on Spark是由Cloudera发起,由Intel、MapR等公司共同参与的开源项目,其目的是把Spark作为Hive的一个计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算。通过该项目,可以提高Hive查询的性能,同时为已经部署了Hive或者Spark的用户提供了更加灵活的选择,从而进一步提高Hive和Spark的普及率。

Hive on Spark是从Hive on MapReduce演进而来,Hive的整体解决方案很不错,但是从查询提交到结果返回需要相当长的时间,查询耗时太长,这个主要原因就是由于Hive原生是基于MapReduce的,那么如果我们不生成MapReduce Job,而是生成Spark Job,就可以充分利用Spark的快速执行能力来缩短HiveQL的响应时间。

Hive on Spark现在是Hive组件(从Hive1.1 release之后)的一部分。

SparkSQL和Hive On Spark都是在Spark上实现SQL的解决方案。Spark早先有Shark项目用来实现SQL层,不过后来推翻重做了,就变成了SparkSQL。这是Spark官方Databricks的项目,Spark项目本身主推的SQL实现。Hive On Spark比SparkSQL稍晚。Hive原本是没有很好支持MapReduce之外的引擎的,而Hive On Tez项目让Hive得以支持和Spark近似的Planning结构(非MapReduce的DAG)。所以在此基础上,Cloudera主导启动了Hive On Spark。这个项目得到了IBM,Intel和MapR的支持(但是没有Databricks)。

5. 代码示例

SparkSQL实例代码:

import org.apache.spark._

object Hello {

    // 创建一个表示用户的自定义类
    case class Person(name: String, age: Int)

    def main(args: Array[String]) {

        val conf = new SparkConf().setAppName("SparkSQL Demo")
        val sc = new SparkContext(conf)

        // 首先用已有的Spark Context对象创建SQLContext对象
        val sqlContext = new org.apache.spark.sql.SQLContext(sc)

        // 导入语句,可以隐式地将RDD转化成DataFrame
        import sqlContext.implicits._

        // 用数据集文本文件创建一个Person对象的DataFrame
        val people = sc.textFile("/Users/urey/data/input2.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()

        // 将DataFrame注册为一个表
        people.registerTempTable("people")

        // SQL查询
        val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")

        // 输出查询结果,按照顺序访问结果行的各个列。
        teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

        sc.stop()
        }
}

Hive on Spark实例代码:

val hiveContext = new HiveContext(sc)

import hiveContext._

hql("CREATE TABLE IF NOT EXIST src(key INT, value STRING)")

hql("LOAD DATA LOCAL PATH '/Users/urey/data/input2.txt' INTO TABLE src")

hql("FROM src SELECT key, value").collect().foreach(println)

你可能感兴趣的:(大数据)