基于Tensorflow实现基本的线性回归(Linear regression)

线性回归(Linear_regression)

本文基于Tensorflow实现基本的线性回归

代码参考GitHub [Tensorflow学习 ]

代码参考GitHub [Tensorflow-Examples ]

1.numpy导入数据

train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,7.997,5.654,9.27,3.1]) 
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
                         2.827,3.465,1.65,2.904,2.42,2.94,1.3])
#导入17个 train_x和train_y 数据                         
n_samples = train_X.shape[0]     #得到数据train_x 的个数

当set 表示二维数组 [[1,2],[3,4],[5,6],[7,8]]
set.shape[0] 求得数组的行数
set.shape[1] 求得数组的列数
set.shape 求得数组形状

2.设置学习率和设置权重 偏差的占位符

learning_rate = 0.01     #设置学习率
training_epochs = 1000   #设置训练步数
display_step = 50        #设置结果显示步数

# X Y的占位符,设置成32位浮点数
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# 设置随机权重(weight),设置偏差(bias)为零
W = tf.Variable(tf.random_uniform([1]))
b = tf.Variable(tf.zeros([1]))

3.最小化误差

# 构造线性模型  y = x*w + b
pred = tf.add(tf.multiply(X, W), b)

# 计算均方误差  
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
# 梯度下降  Gradient descent
#  Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# 初始化全部变量
init = tf.global_variables_initializer()

4.开始训练

# Start training
with tf.Session() as sess:
    # Run the initializer
    sess.run(init)
    # Fit all training data
    for epoch in range(training_epochs):
        sess.run(optimizer, feed_dict={X:train_X, Y: train_Y})
        # Display logs per epoch step
        if (epoch+1) % display_step == 0:
            c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
                "W=", sess.run(W), "b=", sess.run(b))

    print("Optimization Finished!")
    training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')

基于Tensorflow实现基本的线性回归(Linear regression)_第1张图片
训练结果显示

5.显示图案

显示前要在代码上加入 import matplotlib.pyplot as plt

 # Graphic display
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

基于Tensorflow实现基本的线性回归(Linear regression)_第2张图片

6.测试训练出的方程,在测试集上的准确率

# Testing example, as requested (Issue #2)
    test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
    test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])

    print("Testing... (Mean square loss Comparison)")
    testing_cost = sess.run(
        tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
        feed_dict={X: test_X, Y: test_Y})  # same function as cost above
    print("Testing cost=", testing_cost)
    print("Absolute mean square loss difference:", abs(
        training_cost - testing_cost))

    plt.plot(test_X, test_Y, 'bo', label='Testing data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

基于Tensorflow实现基本的线性回归(Linear regression)_第3张图片

基于Tensorflow实现基本的线性回归(Linear regression)_第4张图片

7.最后的代码

import tensorflow as tf
import numpy
import matplotlib.pyplot as plt

# Parameters
learning_rate = 0.01
training_epochs = 1000
display_step = 50

# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
                         2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]

# tf Graph Input
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# Set model weights
W = tf.Variable(tf.random_uniform([1]))
b = tf.Variable(tf.zeros([1]))

# Construct a linear model
pred = tf.add(tf.multiply(X, W), b)

# Mean squared error
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
# Gradient descent
#  Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

# Start training
with tf.Session() as sess:

    # Run the initializer
    sess.run(init)

    # Fit all training data
    for epoch in range(training_epochs):
        sess.run(optimizer, feed_dict={X:train_X, Y: train_Y})

        # Display logs per epoch step
        if (epoch+1) % display_step == 0:
            c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
                "W=", sess.run(W), "b=", sess.run(b))

    print("Optimization Finished!")
    training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')

    # Graphic display
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

    # Testing example, as requested (Issue #2)
    test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
    test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])

    print("Testing... (Mean square loss Comparison)")
    testing_cost = sess.run(
        tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
        feed_dict={X: test_X, Y: test_Y})  # same function as cost above
    print("Testing cost=", testing_cost)
    print("Absolute mean square loss difference:", abs(
        training_cost - testing_cost))

    plt.plot(test_X, test_Y, 'bo', label='Testing data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

你可能感兴趣的:(Tensorflow学习)