import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import os
import tqdm
import tensorflow as tf
print(tf.__version__)
import re
from tensorflow import keras
from sklearn.model_selection import train_test_split
from nltk.corpus import stopwords
import nltk
import tensorflow_hub as hub
import tokenization
2.0.0
path_home = r"D:\pro\tianchi\kaggle_tweet_emotion"
data_train = pd.read_csv(os.path.join(path_home,"train.csv"),encoding="utf-8")
data_test = pd.read_csv(os.path.join(path_home,"test.csv"),encoding="utf-8")
data_submit = pd.read_csv(os.path.join(path_home,"sample_submission.csv"),encoding="utf-8")
stopwords_english = stopwords.words("english")
def cleanword(s):
s = s.lower()
temp = re.findall("http\S*",s)
for deletStr in temp:
if deletStr != "":
s = s.replace(deletStr," ")
temp = re.findall("@\S*",s)
for deletStr in temp:
if deletStr != "":
s = s.replace(deletStr," ")
temp = re.findall("\d*",s)
for deletStr in temp:
if deletStr != "":
s = s.replace(deletStr," ")
temp = re.findall("\x89\S*",s)
for deletStr in temp:
if deletStr != "":
s = s.replace(deletStr[:5]," ")
s = s.replace("\n"," ")
s = s.replace(","," ")
s = s.replace("?"," ")
s = s.replace("..."," ")
s = s.replace("."," ")
s = s.replace("["," ")
s = s.replace("]"," ")
s = s.replace("!"," ")
s = s.replace(":"," ")
s = s.replace("-"," ")
s = s.replace("#"," ")
s = s.replace("|"," ")
s = s.replace("("," ")
s = s.replace(")"," ")
s = s.replace(";"," ")
s = s.replace("="," ")
s = s.replace(">"," ")
s = s.replace("<"," ")
s = s.replace("/"," ")
s_new = ""
word = ""
for i in range(len(s)):
if s[i] != " " :
word += s[i]
else:
if word != "":
s_new = s_new + " " + word
word = ""
if word != "":
s_new += word
s_new = s_new.strip()
return s_new
data_test['text'] = data_test['text'].apply(cleanword)
data_train['text'] = data_train['text'].apply(cleanword)
"""
1:找到需要的包的下载网址,
2:修改网址:把tfhub.dev替换为storage.googleapis.com/tfhub-modules,并附加.tar.gz作为后缀,下载压缩包
引用博客:https://zhuanlan.zhihu.com/p/64069911
"""
path_bert = r"D:\pro\model\bert_en_uncased_L-12_H-768_A-12-2"
spec = hub.load(path_bert)
bert_layer = hub.KerasLayer(spec,trainable=True)
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case)
def bert_encode(texts,tokenizer,max_length = 20):
all_tokens = []
all_masks = []
all_segments = []
for text in texts:
text = tokenizer.tokenize(text)
text = text[:max_length-2]
input_sequence = ["[CLS]"] + text + ["[SEP]"]
pad_len = max_length- len(input_sequence)
tokens = tokenizer.convert_tokens_to_ids(input_sequence)
tokens += [0] * pad_len
pad_masks = [1] * len(input_sequence) + [0] * pad_len
segment_ids = [0] * max_length
all_tokens.append(tokens)
all_masks.append(pad_masks)
all_segments.append(segment_ids)
return np.array(all_tokens) , np.array(all_masks) , np.array(all_segments)
max_seq_length = 20
def build_model(bert_layer,max_len):
input_word_ids = keras.layers.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids")
input_mask = keras.layers.Input(shape=(max_len,), dtype=tf.int32, name="input_mask")
segment_ids = keras.layers.Input(shape=(max_len,), dtype=tf.int32, name="segment_ids")
_, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids])
clf_output = sequence_output[:, 0, :]
out = keras.layers.Dense(1, activation='sigmoid')(clf_output)
model = keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out)
model.compile(keras.optimizers.Adam(lr=2e-6), loss='binary_crossentropy', metrics=['accuracy'])
return model
model = build_model(bert_layer,max_seq_length)
model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_word_ids (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
input_mask (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
segment_ids (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
keras_layer_1 (KerasLayer) [(None, 768), (None, 109482241 input_word_ids[0][0]
input_mask[0][0]
segment_ids[0][0]
__________________________________________________________________________________________________
tf_op_layer_strided_slice (Tens [(None, 768)] 0 keras_layer_1[0][1]
__________________________________________________________________________________________________
dense (Dense) (None, 1) 769 tf_op_layer_strided_slice[0][0]
==================================================================================================
Total params: 109,483,010
Trainable params: 109,483,009
Non-trainable params: 1
__________________________________________________________________________________________________
x_train_input = bert_encode(data_train["text"].values.tolist()[:10],tokenizer,20)
y_input = np.array(data_train['target'].tolist()[:10])
x_test_input = bert_encode(data_test["text"].values.tolist()[:10],tokenizer,20)
x_train_input[2]
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
history = model.fit(
x_train_input,
y_input,
epochs=1,
batch_size=2,
)
Train on 10 samples
2/10 [=====>........................] - ETA: 59s
---------------------------------------------------------------------------
NotFoundError Traceback (most recent call last)
in
3 y_input,
4 epochs=1,
----> 5 batch_size=2,
6 )
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
726 max_queue_size=max_queue_size,
727 workers=workers,
--> 728 use_multiprocessing=use_multiprocessing)
729
730 def evaluate(self,
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)
322 mode=ModeKeys.TRAIN,
323 training_context=training_context,
--> 324 total_epochs=epochs)
325 cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
326
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
121 step=step, mode=mode, size=current_batch_size) as batch_logs:
122 try:
--> 123 batch_outs = execution_function(iterator)
124 except (StopIteration, errors.OutOfRangeError):
125 # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py in execution_function(input_fn)
84 # `numpy` translates Tensors to values in Eager mode.
85 return nest.map_structure(_non_none_constant_value,
---> 86 distributed_function(input_fn))
87
88 return execution_function
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\def_function.py in __call__(self, *args, **kwds)
455
456 tracing_count = self._get_tracing_count()
--> 457 result = self._call(*args, **kwds)
458 if tracing_count == self._get_tracing_count():
459 self._call_counter.called_without_tracing()
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\def_function.py in _call(self, *args, **kwds)
518 # Lifting succeeded, so variables are initialized and we can run the
519 # stateless function.
--> 520 return self._stateless_fn(*args, **kwds)
521 else:
522 canon_args, canon_kwds = \
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\function.py in __call__(self, *args, **kwargs)
1821 """Calls a graph function specialized to the inputs."""
1822 graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
-> 1823 return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
1824
1825 @property
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\function.py in _filtered_call(self, args, kwargs)
1139 if isinstance(t, (ops.Tensor,
1140 resource_variable_ops.BaseResourceVariable))),
-> 1141 self.captured_inputs)
1142
1143 def _call_flat(self, args, captured_inputs, cancellation_manager=None):
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
1222 if executing_eagerly:
1223 flat_outputs = forward_function.call(
-> 1224 ctx, args, cancellation_manager=cancellation_manager)
1225 else:
1226 gradient_name = self._delayed_rewrite_functions.register()
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\function.py in call(self, ctx, args, cancellation_manager)
509 inputs=args,
510 attrs=("executor_type", executor_type, "config_proto", config),
--> 511 ctx=ctx)
512 else:
513 outputs = execute.execute_with_cancellation(
D:\anaconda\envs\python37-tf2\lib\site-packages\tensorflow_core\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
65 else:
66 message = e.message
---> 67 six.raise_from(core._status_to_exception(e.code, message), None)
68 except TypeError as e:
69 keras_symbolic_tensors = [
D:\anaconda\envs\python37-tf2\lib\site-packages\six.py in raise_from(value, from_value)
NotFoundError: [_Derived_]No gradient defined for op: StatefulPartitionedCall
[[{{node Func/_4}}]]
[[PartitionedCall/gradients/StatefulPartitionedCall_grad/PartitionedCall/gradients/StatefulPartitionedCall_grad/SymbolicGradient]] [Op:__inference_distributed_function_45886]
Function call stack:
distributed_function
result = model.predict(x_test_input)
print(result)
[[0.50043786]
[0.6113935 ]
[0.54540795]
[0.5461257 ]
[0.623365 ]
[0.5049557 ]
[0.53970295]
[0.44961035]
[0.5201147 ]
[0.55124974]]