Go 语言对并发的支持是这门语言最重要的特性之一。goroutine 很像线程,但是它占用的 内存远少于线程,使用它需要的代码更少。通道(channel)是一种内置的数据结构,可以让 用户在不同的 goroutine 之间同步发送具有类型的消息。这让编程模型更倾向于在 goroutine 之间发送消息,而不是让多个 goroutine 争夺同一个数据的使用权。让我们看看这些特性的细节。
goroutine 是可以与其他 goroutine 并行执行的函数,同时也会与主程序(程序的入口)并行 执行。在其他编程语言中,你需要用线程来完成同样的事情,而在 Go 语言中会使用同一个线程 来执行多个 goroutine。例如,用户在写一个 Web 服务器,希望同时处理不同的 Web 请求,如果 使用 C 或者 Java,不得不写大量的额外代码来使用线程。在 Go 语言中,net/http 库直接使用了 内置的 goroutine。每个接收到的请求都自动在其自己的 goroutine 里处理。goroutine 使用的内存 比线程更少,Go 语言运行时会自动在配置的一组逻辑处理器上调度执行 goroutine。每个逻辑处理器绑定到一个操作系统线程上(见图 1-2)。这让用户的应用程序执行效率更高,而开发工作量显著减少。
如果想在执行一段代码的同时,并行去做另外一些事情,goroutine 是很好的选择。下面是一 个简单的例子:
func log(msg string) { ...这里是一些记录日志的代码
} // 代码里有些地方检测到了错误
go log("发生了可怕的事情")
关键字 go 是唯一需要去编写的代码,调度 log 函数作为独立的 goroutine 去运行,以便与其他 goroutine 并行执行。这意味着应用程序的其余部分会与记录日志并行执行,通常这种并行 能让最终用户觉得性能更好。就像之前说的,goroutine 占用的资源更少,所以常常能启动成千上万个 goroutine。
通道是一种数据结构,可以让 goroutine 之间进行安全的数据通信。通道可以帮用户避免其他语言里常见的共享内存访问的问题。
并发的最难的部分就是要确保其他并发运行的进程、线程或 goroutine 不会意外修改用户的 数据。当不同的线程在没有同步保护的情况下修改同一个数据时,总会发生灾难。在其他语言中,如果使用全局变量或者共享内存,必须使用复杂的锁规则来防止对同一个变量的不同步修改。
为了解决这个问题,通道提供了一种新模式,从而保证并发修改时的数据安全。通道这一模 式保证同一时刻只会有一个 goroutine 修改数据。通道用于在几个运行的 goroutine 之间发送数据。 在图中可以看到数据是如何流动的示例。想象一个应用程序,有多个进程需要顺序读取或者修改某个数据,使用 goroutine 和通道,可以为这个过程建立安全的模型。
图中有 3 个 goroutine,还有 2 个不带缓存的通道。第一个 goroutine 通过通道把数 据传给已经在等待的第二个 goroutine。在两个 goroutine 间传输数据是同步的,一旦传输完成,两个 goroutine 都会知道数据已经完成传输。当第二个 goroutine 利用这个数据完成其任务后,将这个数据传给第三个正在等待的 goroutine。这次传输依旧是同步的,两个 goroutine 都会确认数据传输完成。这种在 goroutine 之间安全传输数据的方法不需要任何锁或者同步机制。
需要强调的是,通道并不提供跨 goroutine 的数据访问保护机制。如果通过通道传输数据的 一份副本,那么每个 goroutine 都持有一份副本,各自对自己的副本做修改是安全的。当传输的 是指向数据的指针时,如果读和写是由不同的 goroutine 完成的,每个 goroutine 依旧需要额外的同步动作。
Go 语言提供了灵活的、无继承的类型系统,无需降低运行性能就能最大程度上复用代码。这个类型系统依然支持面向对象开发,但避免了传统面向对象的问题。如果你曾经在复杂的 Java 和C++程序上花数周时间考虑如何抽象类和接口,你就能意识到Go语言的类型系统有多么简单。 Go 开发者使用组合(composition)设计模式,只需简单地将一个类型嵌入到另一个类型,就能复用所有的功能。其他语言也能使用组合,但是不得不和继承绑在一起使用,结果使整个用法非常复杂,很难使用。在 Go 语言中,一个类型由其他更微小的类型组合而成,避免了传统的基于继承的模型。
另外,Go 语言还具有独特的接口实现机制,允许用户对行为进行建模,而不是对类型进行建模。在 Go 语言中,不需要声明某个类型实现了某个接口,编译器会判断一个类型的实例是否符合正在使用的接口。Go 标准库里的很多接口都非常简单,只开放几个函数。从实践上讲,尤其对那些使用类似 Java 的面向对象语言的人来说,需要一些时间才能习惯这个特性。
Go 语言不仅有类似int和string这样的内置类型,还支持用户定义的类型。在 Go 语言中,用户定义的类型通常包含一组带类型的字段,用于存储数据。Go 语言的用户定义的类型看 起来和 C 语言的结构很像,用起来也很相似。不过 Go 语言的类型可以声明操作该类型数据的方法。传统语言使用继承来扩展结构——Client 继承自User,User 继承自Entity,Go 语言与此不同, Go 开发者构建更小的类型——Customer 和 Admin,然后把这些小类型组合成更大的类型。
接口用于描述类型的行为。如果一个类型的实例实现了一个接口,意味着这个实例可以执行一组特定的行为。你甚至不需要去声明这个实例实现某个接口,只需要实现这组行为就好。其他的语言把这个特性叫作鸭子类型——如果它叫起来像鸭子,那它就可能是只鸭子。Go 语言的接 口也是这么做的。在 Go 语言中,如果一个类型实现了一个接口的所有方法,那么这个类型的实例就可以存储在这个接口类型的实例中,不需要额外声明。
不当的内存管理会导致程序崩溃或者内存泄漏,甚至让整个操作系统崩溃。Go 语言拥有现代化的垃圾回收机制,能帮你解决这个难题。在其他系统语言(如 C 或者 C++)中,使用内存前要先分配这段内存,而且使用完毕后要将其释放掉。哪怕只做错了一件事,都可能导致程序崩溃或者内存泄漏。可惜,追踪内存是否还被使用本身就是十分艰难的事情,而要想支持多线程和高并发,更是让这件事难上加难。虽然 Go 语言的垃圾回收会有一些额外的开销,但是编程时, 能显著降低开发难度。Go 语言把无趣的内存管理交给专业的编译器去做,而让程序员专注于更有趣的事情。
package main
import (
"fmt"
)
func main() {
fmt.Println("Hello,World!")
}