本文将通过设置变量的自动求导方式来手动编写一个线性模型和利用Pytorch自定义的线性层来实现一个线性模型。
#encoding=utf-8
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
# 生成数据集
input_dim = 2
exmples_num = 1000
true_w = [2,-3.4]
true_b = 4.2
features = torch.randn(exmples_num,input_dim,dtype=torch.float32)
labels = true_w[0] * features[:,0] + true_w[1] * features[:,1] + true_b
# 给标签添加一些噪音
labels += torch.tensor(np.random.normal(0,0.01,size=labels.size()),dtype=torch.float32)
# 图形展示
def use_svg_display():
display.set_matplotlib_formats('svg')
# 设置尺寸
def set_figsize(figsize=(3.5,2.5)):
use_svg_display()
plt.rcParams['figure.figsize'] = figsize
# 定义数据读取函数,返回一个batch的数据和对应的label值
def data_iter(batch_size,features,labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)
for i in range(0,num_examples,batch_size):
j = torch.LongTensor(indices[i:min(i+batch_size,num_examples)])
#index_select(0,j) 0表示按照行进行搜索,其中搜索出来的行为tensor j中定义的行
yield features.index_select(0,j),labels.index_select(0,j)
# 定义batch的大小,生成初始化的参数
batch_size = 10
w = torch.tensor(np.random.normal(0,0.01,(input_dim,1)),dtype=torch.float32)
b = torch.zeros(1,dtype=torch.float32)
# 保证参数是可以进行求导的(需要用导数来进行更新)
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
# 定义线性模型
def linreg(X,w,b):
return torch.mm(X,w) + b
#定义损失函数
def squared_loss(y_hat,y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2
#定义优化算法
def sgd(params,lr,batch_size):
for param in params:
param.data -= lr * param.grad / batch_size
#定义相关的超参数
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
if __name__ == '__main__':
#定义训练过程
for epoch in range(num_epochs):
for X,y in data_iter(batch_size,features,labels):
loss_value = loss(net(X,w,b),y).sum()
loss_value.backward()
sgd([w,b],lr,batch_size)
w.grad.data.zero_()
b.grad.data.zero_()
train_loss = loss(net(features,w,b),labels)
print("epoch %d. loss %f" %(epoch+1,train_loss.mean().item()))
print(true_w," VS ",w.tolist())
print(true_b," VS ",b.tolist())
#encoding = utf-8
import torch
import torch.nn as nn
import torch.utils.data as Data
import numpy as np
from torch.nn import init
import torch.optim as optim
#生成数据
# 生成数据集
input_dim = 2
exmples_num = 1000
true_w = [2,-3.4]
true_b = 4.2
features = torch.randn(exmples_num,input_dim,dtype=torch.float32)
labels = true_w[0] * features[:,0] + true_w[1] * features[:,1] + true_b
# 给预测添加一些噪音
labels += torch.tensor(np.random.normal(0,0.01,size=labels.size()),dtype=torch.float32)
# 利用数据加载器来自动的加载数据
batch_size = 10
dataset = Data.TensorDataset(features,labels)
data_iter = Data.DataLoader(dataset,batch_size,shuffle=True)
# 定义模型
class linear(nn.Module):
def __init__(self,input_dim):
super(linear,self).__init__()
self.li = nn.Linear(input_dim,1)
def forward(self,x):
y = self.li(x)
return y
if __name__ == '__main__':
#定义模型
net = linear(input_dim)
init.normal_(net.li.weight,mean=0,std=0.01)
init.constant_(net.li.bias,val=0)
#定义损失函数
loss = nn.MSELoss()
# 定义优化器
optimzer = optim.SGD(net.parameters(),lr=0.03)
num_epochs = 3
for epoch in range(1,num_epochs+1):
for X,y in data_iter:
output = net(X)
loss_value = loss(output,y.view(-1,1))
optimzer.zero_grad()
loss_value.backward()
optimzer.step()
print("epoch %d . loss: %f" %(epoch,loss_value.item()))
在这个部分中,我们重点介绍的是 Pytorch中的处理模块torch.utils.data。
进一步,我们要介绍的是如何利用pytorch建立容器,在容器内部添加网络层。
# 写法一
net = nn.Sequential(
nn.Linear(num_inputs, 1)
# 此处还可以传入其他层
)
# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear', nn.Linear(num_inputs, 1))
# ......
]))
print(net)
print(net[0])
容器网网络建立的方式如上图所示。
for param in net.parameters():
print(param) # 输出每一个层的参数
for i in range(num_layers):
init.normal_(net[i].weight,mean=0,std=0.01) # mean:均值 std:标准差
init.constant_(net[i].bias,vla=0)
在上面的文章中,我们以线性模型的实现来描述Pytorch 如何实现线性模型,其中重点关注的了数据的加载,容器搭建已经参数的初始化模模块。