转自sktywang12345
Prim算法(一)之 C语言详解
本章介绍普里姆算法。和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。
目录
1. 普里姆算法介绍
2. 普里姆算法图解
3. 普里姆算法的代码说明
4. 普里姆算法的源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。
基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。
以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。
初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
此时,U={A}。
第2步:将顶点B加入到U中。
上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。
此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。
以"邻接矩阵"为例对普里姆算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。
2. 普里姆算法
/*
* prim最小生成树
*
* 参数说明:
* G -- 邻接矩阵图
* start -- 从图中的第start个元素开始,生成最小树
*/
void prim(Graph G, int start)
{
int min,i,j,k,m,n,sum;
int index=0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值
// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = G.vexs[start];
// 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < G.vexnum; i++ )
weights[i] = G.matrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0;
for (i = 0; i < G.vexnum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue;
j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < G.vexnum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
}
// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = G.vexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < G.vexnum; j++)
{
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && G.matrix[k][j] < weights[j])
weights[j] = G.matrix[k][j];
}
}
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
if (G.matrix[m][n]
min = G.matrix[m][n];
}
sum += min;
}
// 打印最小生成树
printf("PRIM(%c)=%d: ", G.vexs[start], sum);
for (i = 0; i < index; i++)
printf("%c ", prims[i]);
printf("\n");
}
这里分别给出"邻接矩阵图"和"邻接表图"的普里姆算法源码。
1. 邻接矩阵源码(matrix_udg.c)
2. 邻接表源码(list_udg.c)
/**
* C: prim算法生成最小生成树(邻接矩阵)
*
* @author skywang
* @date 2014/04/23
*/
#include
#include
#include
#include
#define MAX 100 // 矩阵最大容量
#define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position(Graph g, char ch)
{
int i;
for(i=0; i if(g.vexs[i]==ch) return i; return -1; } /* * 读取一个输入字符 */ static char read_char() { char ch; do { ch = getchar(); } while(!isLetter(ch)); return ch; } /* * 创建图(自己输入) */ Graph* create_graph() { char c1, c2; int v, e; int i, j, weight, p1, p2; Graph* pG; // 输入"顶点数"和"边数" printf("input vertex number: "); scanf("%d", &v); printf("input edge number: "); scanf("%d", &e); if ( v < 1 || e < 1 || (e > (v * (v-1)))) { printf("input error: invalid parameters!\n"); return NULL; } if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL ) return NULL; memset(pG, 0, sizeof(Graph)); // 初始化"顶点数"和"边数" pG->vexnum = v; pG->edgnum = e; // 初始化"顶点" for (i = 0; i < pG->vexnum; i++) { printf("vertex(%d): ", i); pG->vexs[i] = read_char(); } // 1. 初始化"边"的权值 for (i = 0; i < pG->vexnum; i++) { for (j = 0; j < pG->vexnum; j++) { if (i==j) pG->matrix[i][j] = 0; else pG->matrix[i][j] = INF; } } // 2. 初始化"边"的权值: 根据用户的输入进行初始化 for (i = 0; i < pG->edgnum; i++) { // 读取边的起始顶点,结束顶点,权值 printf("edge(%d):", i); c1 = read_char(); c2 = read_char(); scanf("%d", &weight); p1 = get_position(*pG, c1); p2 = get_position(*pG, c2); if (p1==-1 || p2==-1) { printf("input error: invalid edge!\n"); free(pG); return NULL; } pG->matrix[p1][p2] = weight; pG->matrix[p2][p1] = weight; } return pG; } /* * 创建图(用已提供的矩阵) */ Graph* create_example_graph() { char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; int matrix[][9] = { /*A*//*B*//*C*//*D*//*E*//*F*//*G*/ /*A*/ { 0, 12, INF, INF, INF, 16, 14}, /*B*/ { 12, 0, 10, INF, INF, 7, INF}, /*C*/ { INF, 10, 0, 3, 5, 6, INF}, /*D*/ { INF, INF, 3, 0, 4, INF, INF}, /*E*/ { INF, INF, 5, 4, 0, 2, 8}, /*F*/ { 16, 7, 6, INF, 2, 0, 9}, /*G*/ { 14, INF, INF, INF, 8, 9, 0}}; int vlen = LENGTH(vexs); int i, j; Graph* pG; // 输入"顶点数"和"边数" if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL ) return NULL; memset(pG, 0, sizeof(Graph)); // 初始化"顶点数" pG->vexnum = vlen; // 初始化"顶点" for (i = 0; i < pG->vexnum; i++) pG->vexs[i] = vexs[i]; // 初始化"边" for (i = 0; i < pG->vexnum; i++) for (j = 0; j < pG->vexnum; j++) pG->matrix[i][j] = matrix[i][j]; // 统计边的数目 for (i = 0; i < pG->vexnum; i++) for (j = 0; j < pG->vexnum; j++) if (i!=j && pG->matrix[i][j]!=INF) pG->edgnum++; pG->edgnum /= 2; return pG; } /* * 返回顶点v的第一个邻接顶点的索引,失败则返回-1 */ static int first_vertex(Graph G, int v) { int i; if (v<0 || v>(G.vexnum-1)) return -1; for (i = 0; i < G.vexnum; i++) if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF) return i; return -1; } /* * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1 */ static int next_vertix(Graph G, int v, int w) { int i; if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1)) return -1; for (i = w + 1; i < G.vexnum; i++) if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF) return i; return -1; } /* * 深度优先搜索遍历图的递归实现 */ static void DFS(Graph G, int i, int *visited) { int w; visited[i] = 1; printf("%c ", G.vexs[i]); // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走 for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w)) { if (!visited[w]) DFS(G, w, visited); } } /* * 深度优先搜索遍历图 */ void DFSTraverse(Graph G) { int i; int visited[MAX]; // 顶点访问标记 // 初始化所有顶点都没有被访问 for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("DFS: "); for (i = 0; i < G.vexnum; i++) { //printf("\n== LOOP(%d)\n", i); if (!visited[i]) DFS(G, i, visited); } printf("\n"); } /* * 广度优先搜索(类似于树的层次遍历) */ void BFS(Graph G) { int head = 0; int rear = 0; int queue[MAX]; // 辅组队列 int visited[MAX]; // 顶点访问标记 int i, j, k; for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("BFS: "); for (i = 0; i < G.vexnum; i++) { if (!visited[i]) { visited[i] = 1; printf("%c ", G.vexs[i]); queue[rear++] = i; // 入队列 } while (head != rear) { j = queue[head++]; // 出队列 for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为访问的邻接顶点 { if (!visited[k]) { visited[k] = 1; printf("%c ", G.vexs[k]); queue[rear++] = k; } } } } printf("\n"); } /* * 打印矩阵队列图 */ void print_graph(Graph G) { int i,j; printf("Martix Graph:\n"); for (i = 0; i < G.vexnum; i++) { for (j = 0; j < G.vexnum; j++) printf("%10d ", G.matrix[i][j]); printf("\n"); } } /* * prim最小生成树 * * 参数说明: * G -- 邻接矩阵图 * start -- 从图中的第start个元素开始,生成最小树 */ void prim(Graph G, int start) { int min,i,j,k,m,n,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = G.vexs[start]; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < G.vexnum; i++ ) weights[i] = G.matrix[start][i]; // 将第start个顶点的权值初始化为0。 // 可以理解为"第start个顶点到它自身的距离为0"。 weights[start] = 0; for (i = 0; i < G.vexnum; i++) { // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue; j = 0; k = 0; min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < G.vexnum) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = G.vexs[k]; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < G.vexnum; j++) { // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && G.matrix[k][j] < weights[j]) weights[j] = G.matrix[k][j]; } } // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++) { min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++) { m = get_position(G, prims[j]); if (G.matrix[m][n] min = G.matrix[m][n]; } sum += min; } // 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start], sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf("\n"); } void main() { Graph* pG; // 自定义"图"(输入矩阵队列) //pG = create_graph(); // 采用已有的"图" pG = create_example_graph(); //print_graph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 prim(*pG, 0); // prim算法生成最小生成树 } /** * C: prim算法生成最小生成树(邻接表) * * @author skywang * @date 2014/04/23 */ #include #include #include #include #define MAX 100 #define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF) #define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z'))) #define LENGTH(a) (sizeof(a)/sizeof(a[0])) // 邻接表中表对应的链表的顶点 typedef struct _ENode { int ivex; // 该边的顶点的位置 int weight; // 该边的权 struct _ENode *next_edge; // 指向下一条弧的指针 }ENode, *PENode; // 邻接表中表的顶点 typedef struct _VNode { char data; // 顶点信息 ENode *first_edge; // 指向第一条依附该顶点的弧 }VNode; // 邻接表 typedef struct _LGraph { int vexnum; // 图的顶点的数目 int edgnum; // 图的边的数目 VNode vexs[MAX]; }LGraph; /* * 返回ch在matrix矩阵中的位置 */ static int get_position(LGraph g, char ch) { int i; for(i=0; i if(g.vexs[i].data==ch) return i; return -1; } /* * 读取一个输入字符 */ static char read_char() { char ch; do { ch = getchar(); } while(!isLetter(ch)); return ch; } /* * 将node链接到list的末尾 */ static void link_last(ENode *list, ENode *node) { ENode *p = list; while(p->next_edge) p = p->next_edge; p->next_edge = node; } /* * 创建邻接表对应的图(自己输入) */ LGraph* create_lgraph() { char c1, c2; int v, e; int i, p1, p2; int weight; ENode *node1, *node2; LGraph* pG; // 输入"顶点数"和"边数" printf("input vertex number: "); scanf("%d", &v); printf("input edge number: "); scanf("%d", &e); if ( v < 1 || e < 1 || (e > (v * (v-1)))) { printf("input error: invalid parameters!\n"); return NULL; } if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL ) return NULL; memset(pG, 0, sizeof(LGraph)); // 初始化"顶点数"和"边数" pG->vexnum = v; pG->edgnum = e; // 初始化"邻接表"的顶点 for(i=0; i { printf("vertex(%d): ", i); pG->vexs[i].data = read_char(); pG->vexs[i].first_edge = NULL; } // 初始化"邻接表"的边 for(i=0; i { // 读取边的起始顶点,结束顶点,权 printf("edge(%d): ", i); c1 = read_char(); c2 = read_char(); scanf("%d", &weight); p1 = get_position(*pG, c1); p2 = get_position(*pG, c2); // 初始化node1 node1 = (ENode*)malloc(sizeof(ENode)); node1->ivex = p2; node1->weight = weight; // 将node1链接到"p1所在链表的末尾" if(pG->vexs[p1].first_edge == NULL) pG->vexs[p1].first_edge = node1; else link_last(pG->vexs[p1].first_edge, node1); // 初始化node2 node2 = (ENode*)malloc(sizeof(ENode)); node2->ivex = p1; node2->weight = weight; // 将node2链接到"p2所在链表的末尾" if(pG->vexs[p2].first_edge == NULL) pG->vexs[p2].first_edge = node2; else link_last(pG->vexs[p2].first_edge, node2); } return pG; } // 边的结构体(用来创建示例图) typedef struct _edata { char start; // 边的起点 char end; // 边的终点 int weight; // 边的权重 }EData; // 顶点 static char gVexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'}; // 边 static EData gEdges[] = { // 起点 终点 权 {'A', 'B', 12}, {'A', 'F', 16}, {'A', 'G', 14}, {'B', 'C', 10}, {'B', 'F', 7}, {'C', 'D', 3}, {'C', 'E', 5}, {'C', 'F', 6}, {'D', 'E', 4}, {'E', 'F', 2}, {'E', 'G', 8}, {'F', 'G', 9}, }; /* * 创建邻接表对应的图(用已提供的数据) */ LGraph* create_example_lgraph() { char c1, c2; int vlen = LENGTH(gVexs); int elen = LENGTH(gEdges); int i, p1, p2; int weight; ENode *node1, *node2; LGraph* pG; if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL ) return NULL; memset(pG, 0, sizeof(LGraph)); // 初始化"顶点数"和"边数" pG->vexnum = vlen; pG->edgnum = elen; // 初始化"邻接表"的顶点 for(i=0; i { pG->vexs[i].data = gVexs[i]; pG->vexs[i].first_edge = NULL; } // 初始化"邻接表"的边 for(i=0; i { // 读取边的起始顶点,结束顶点,权 c1 = gEdges[i].start; c2 = gEdges[i].end; weight = gEdges[i].weight; p1 = get_position(*pG, c1); p2 = get_position(*pG, c2); // 初始化node1 node1 = (ENode*)malloc(sizeof(ENode)); node1->ivex = p2; node1->weight = weight; // 将node1链接到"p1所在链表的末尾" if(pG->vexs[p1].first_edge == NULL) pG->vexs[p1].first_edge = node1; else link_last(pG->vexs[p1].first_edge, node1); // 初始化node2 node2 = (ENode*)malloc(sizeof(ENode)); node2->ivex = p1; node2->weight = weight; // 将node2链接到"p2所在链表的末尾" if(pG->vexs[p2].first_edge == NULL) pG->vexs[p2].first_edge = node2; else link_last(pG->vexs[p2].first_edge, node2); } return pG; } /* * 深度优先搜索遍历图的递归实现 */ static void DFS(LGraph G, int i, int *visited) { int w; ENode *node; visited[i] = 1; printf("%c ", G.vexs[i].data); node = G.vexs[i].first_edge; while (node != NULL) { if (!visited[node->ivex]) DFS(G, node->ivex, visited); node = node->next_edge; } } /* * 深度优先搜索遍历图 */ void DFSTraverse(LGraph G) { int i; int visited[MAX]; // 顶点访问标记 // 初始化所有顶点都没有被访问 for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("DFS: "); for (i = 0; i < G.vexnum; i++) { if (!visited[i]) DFS(G, i, visited); } printf("\n"); } /* * 广度优先搜索(类似于树的层次遍历) */ void BFS(LGraph G) { int head = 0; int rear = 0; int queue[MAX]; // 辅组队列 int visited[MAX]; // 顶点访问标记 int i, j, k; ENode *node; for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("BFS: "); for (i = 0; i < G.vexnum; i++) { if (!visited[i]) { visited[i] = 1; printf("%c ", G.vexs[i].data); queue[rear++] = i; // 入队列 } while (head != rear) { j = queue[head++]; // 出队列 node = G.vexs[j].first_edge; while (node != NULL) { k = node->ivex; if (!visited[k]) { visited[k] = 1; printf("%c ", G.vexs[k].data); queue[rear++] = k; } node = node->next_edge; } } } printf("\n"); } /* * 打印邻接表图 */ void print_lgraph(LGraph G) { int i,j; ENode *node; printf("List Graph:\n"); for (i = 0; i < G.vexnum; i++) { printf("%d(%c): ", i, G.vexs[i].data); node = G.vexs[i].first_edge; while (node != NULL) { printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data); node = node->next_edge; } printf("\n"); } } /* * 获取G中边 */ int getWeight(LGraph G, int start, int end) { ENode *node; if (start==end) return 0; node = G.vexs[start].first_edge; while (node!=NULL) { if (end==node->ivex) return node->weight; node = node->next_edge; } return INF; } /* * prim最小生成树 * * 参数说明: * G -- 邻接表图 * start -- 从图中的第start个元素开始,生成最小树 */ void prim(LGraph G, int start) { int min,i,j,k,m,n,tmp,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = G.vexs[start].data; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < G.vexnum; i++ ) weights[i] = getWeight(G, start, i); for (i = 0; i < G.vexnum; i++) { // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue; j = 0; k = 0; min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < G.vexnum) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = G.vexs[k].data; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < G.vexnum; j++) { // 获取第k个顶点到第j个顶点的权值 tmp = getWeight(G, k, j); // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && tmp < weights[j]) weights[j] = tmp; } } // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++) { min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++) { m = get_position(G, prims[j]); tmp = getWeight(G, m, n); if (tmp < min) min = tmp; } sum += min; } // 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start].data, sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf("\n"); } void main() { LGraph* pG; // 自定义"图"(自己输入数据) //pG = create_lgraph(); // 采用已有的"图" pG = create_example_lgraph(); //print_lgraph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 prim(*pG, 0); // prim算法生成最小生成树 }