sklearn学习(模块列表)

sklearn模块


sklearn主要实现功能(大的模块分类)http://scikit-learn.org/stable/index.html 首页列表中显示

A.  classification (分类)

B.  regression(回归)

C.  Clustering(聚类)

D.  dimensionality reduction(降低维度)

E.  model selection(模型选择)

F.  Preprocessing(预处理)


0.数据集

sklearn.datasets


1.特征预处理

sklearn.feature_extraction(特征抽取:支持文本、图像的特征提取)

sklearn.feature_selection(特征选择)

sklearn.preprocessing(特征预处理:归一化,onehot离散化,normalize等,复杂的离散化方法不支持)

sklearn.random_projection (数据集合)


2/3.模型训练

sklearn.cluster

sklearn.cluster.bicluste

sklearn.semi_supervised

sklearn.svm

sklearn.tree

sklearn.linear_model

sklearn.naive_bayes

sklearn.neural_network


4.模型评估

sklearn.metrics

sklearn.cross_validation


5. 任务批量执行(串行)sklearn.pipeline


其他未知功能

sklearn.decomposition

sklearn.cross_decomposition

sklearn.dummy                           #?样本

sklearn.ensemble

sklearn.gaussian_process

sklearn.grid_search                     #网格搜索,用于调参:通过分类别备选参数,得出笛卡尔积的待实验参数矩阵,逐项实验

sklearn.utils 

sklearn.covariance                     #协方差(矩阵)

sklearn.base                       

sklearn.isotonic

sklearn.kernel_approximation

sklearn.kernel_ridge

sklearn.discriminant_analysis

sklearn.learning_curve

sklearn.manifold

sklearn.mixture

sklearn.multiclass

sklearn.neighbors

sklearn.calibration

你可能感兴趣的:(sklearn学习(模块列表))