使用yolo v3检测标示图片

import os
import cv2
import time
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from absl.flags import FLAGS
from absl import app, flags, logging
from yolov3_tf2.models  import YoloV3, YoloV3Tiny
from yolov3_tf2.dataset import transform_images, load_tfrecord_dataset
from yolov3_tf2.utils   import draw_outputs

FLAGS=flags.FLAGS
flags.DEFINE_string('classes', './data/coco.names', 'path to classes file')
flags.DEFINE_string('weights', './checkpoints/yolov3.tf', 'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('image', './data/inputimg01.jpg', 'path to input image')
flags.DEFINE_string('tfrecord', None, 'tfrecord instead of image')
flags.DEFINE_string('output', './output.jpg', 'path to output image')
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model')

def main(_argv):
    
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        tf.config.experimental.set_memory_growth(physical_devices[0], True)
    if FLAGS.tiny:
        yolo = YoloV3Tiny(classes=FLAGS.num_classes)
    else:
        yolo = YoloV3(classes=FLAGS.num_classes)

    yolo.load_weights(FLAGS.weights).expect_partial()
    logging.info('weights loaded')

    class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
    logging.info('classes loaded')

    if FLAGS.tfrecord:
        dataset = load_tfrecord_dataset(
            FLAGS.tfrecord, FLAGS.classes, FLAGS.size)
        dataset = dataset.shuffle(512)
        img_raw, _label = next(iter(dataset.take(1)))
    else:
        img_raw = tf.image.decode_image(
            open(FLAGS.image, 'rb').read(), channels=3)

    img = tf.expand_dims(img_raw, 0)
    img = transform_images(img, FLAGS.size)

    t1 = time.time()
    boxes, scores, classes, nums = yolo(img)

    print("boxes:",boxes,"scores:",scores,"classes:",classes,"nums",nums)

    t2 = time.time()
    logging.info('time: {}'.format(t2 - t1))

    logging.info('detections:')
    for i in range(nums[0]):
        logging.info('\t{}, {}, {}'.format(class_names[int(classes[0][i])],
                                           np.array(scores[0][i]),
                                           np.array(boxes[0][i])))

    img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR)
    img = draw_outputs(img, (boxes, scores, classes, nums), class_names)
    cv2.imwrite(FLAGS.output, img)
    logging.info('output saved to: {}'.format(FLAGS.output))
    lena = mpimg.imread('output.jpg')
    plt.imshow(lena)
    plt.axis('off') # 不显示坐标轴
    plt.show()

if __name__ == '__main__':
    while True:
        STRfilename=input("请输入待检测图片名称(Quit退出)")
        if STRfilename.upper()=="QUIT":
            break
        else:
            STRfilename="./data/"+STRfilename
            if not os.path.exists(STRfilename):
                continue
            ### flags_dict = FLAGS._flags()    
            ### keys_list = [keys for keys in flags_dict]    
            ### for keys in keys_list:
            ###     FLAGS.__delattr__(keys)
            FLAGS.__delattr__("image")
            flags.DEFINE_string('image', STRfilename, 'path to input image')
        try:
            app.run(main)
        except SystemExit:
            pass

你可能感兴趣的:(opencv,深度学习,tensorflow)