转自Android 写一个属于自己的Rxjava(一)
Android 写一个属于自己的Rxjava(二)
Rxjava的使用重点在于分清楚:上游发射事件,下游接收事件
只要分清楚哪些操作符是作用在上游,哪些作用在下游,在此基础上对上游或者下游封装多一层就成了Rxjava。
源码地址
为了对比rxjava,所有的类名前面都加了Custom表示自定义的意思
定义两个下游的接收事件的基类(观察者):
CustomEmitter
和CustomObserver
,其实二者是基本一样的接口
负责接收onStart
、onNext
、onComplete
、onError
事件
其中CustomObserver
是给暴露给外界使用的,而是CustomEmitter
封装在内部使用
CustomEmitter
// 下游接收事件,并负责暴露给外部的发射事件者
public interface CustomEmitter<T> {
void onNext(T value);
void onError(Throwable e);
void onComplete();
}
CustomObserver
// 下游接收事件
public interface CustomObserver<T> {
void onStart();
void onNext(T t);
void onError(Throwable e);
void onComplete();
}
定义一个上游的执行回调事件的基类(被观察者)
CustomObservableSource
和CustomObservableOnSubscribe
负责执行subscribe
(耗时)方法,并发射(调用)onStart
、onNext
、onComplete
、onError
事件
其中CustomObservableOnSubscribe
是给暴露给外界使用的,而CustomObservableSource
是封装在内部使用
个人不喜欢观察者和被观察者的说法,总是分不清;
所以以下用上游执行者和下游接收者
CustomObservableOnSubscribe
public interface CustomObservableOnSubscribe<T> {
void subscribe(CustomEmitter<T> emitter);
}
CustomObservableSource
public interface CustomObservableSource<T> {
void subscribe(CustomObserver<? super T> observer);
}
CustomObservable
CustomObservable 就是一个基类,负责创建各个对应的子类,这里的create()创建了CustomObservableCreate
public abstract class CustomObservable<T> implements CustomObservableSource {
public static <T> CustomObservable<T> create(CustomObservableOnSubscribe<T> source) {
return new CustomObservableCreate(source);
}
@Override
public void subscribe(CustomObserver observer) {
subscribeActual(observer);
}
protected abstract void subscribeActual(CustomObserver observer);
}
这里之所以CustomObservableCreate继承CustomObservable而不是CustomObservableSource,是为了保证对外抛出去的是CustomObservable
CustomObservableCreate
就是上游的执行事件者,负责封装一层CustomObservableOnSubscribeCustomCreateEmitter
就是下游的接收事件者,负责封装一层CustomObserver// 上游封装了subscriber
public class CustomObservableCreate<T> extends CustomObservable {
private CustomObservableOnSubscribe<T> subscriber;
public CustomObservableCreate(CustomObservableOnSubscribe<T> subscriber) {
this.subscriber = subscriber;
}
@Override
protected void subscribeActual(CustomObserver observer) {
CustomCreateEmitter emitter = new CustomCreateEmitter<T>(observer);
observer.onStart();
// 真正执行耗时方法
subscriber.subscribe(emitter);
}
// 下游封装了CustomObserver
private static class CustomCreateEmitter<T> implements CustomEmitter<T> {
private CustomObserver<? super T> observer;
CustomCreateEmitter(CustomObserver<? super T> observer) {
this.observer = observer;
}
@Override
public void onNext(T o) {
observer.onNext(o);
}
@Override
public void onError(Throwable e) {
observer.onError(e);
}
@Override
public void onComplete() {
observer.onComplete();
}
}
}
测试代码:
public void testCreate() {
CustomObservable.create(new CustomObservableOnSubscribe<String>() {
@Override
public void subscribe(CustomEmitter<String> emitter) {
emitter.onNext("test create");
emitter.onComplete();
}
}).subscribe(ExampleUnitTest.<String>getObserver());
}
public static <T> CustomObserver getObserver() {
CustomObserver<T> observer = new CustomObserver<T>() {
@Override
public void onStart() {
System.out.println("==== start " + Thread.currentThread() + " ====");
}
@Override
public void onNext(T t) {
System.out.println(Thread.currentThread() + " next: " + t);
}
@Override
public void onError(Throwable e) {
System.out.println(Thread.currentThread() + " error: " + e);
}
@Override
public void onComplete() {
System.out.println("==== " + Thread.currentThread() + " complete ==== \n");
}
};
return observer;
}
测试结果:
==== start Thread[main,5,main] ====
Thread[main,5,main] next: test create
==== Thread[main,5,main] complete ====
Rxjava的强大有一方面就在于它丰富的操作符,其中常用之一的就是map
map
的作用是在下游的接收事件者(观察者),将返回的结果进行转换映射
定义一个CustomFunction负责数据转换
public interface CustomFunction<T, R> {
R apply(T t);
}
CustomObservable定义多一个map
的静态方法
public <R> CustomObservable<R> map(CustomFunction<T, R> function) {
return new CustomObservableMap(this, function);
}
CustomObservableMap
public class CustomObservableMap<R, T> extends CustomObservable {
private CustomObservableSource<T> source;
private CustomFunction<T, R> mapper;
public CustomObservableMap(CustomObservableSource<T> source, CustomFunction<T, R> mapper) {
this.source = source;
this.mapper = mapper;
}
@Override
protected void subscribeActual(CustomObserver observer) {
CustomMapObserver<T, R> mapObserver = new CustomMapObserver(observer, mapper);
source.subscribe(mapObserver);
}
private static class CustomMapObserver<T, R> implements CustomObserver<T> {
private CustomObserver<R> observer;
private CustomFunction<T, R> function;
public CustomMapObserver(CustomObserver<R> observer, CustomFunction<T, R> function) {
this.observer = observer;
this.function = function;
}
@Override
public void onStart() {
observer.onStart();
}
@Override
public void onNext(T result) {
// 做结果数据转换映射
observer.onNext(function.apply(result));
}
@Override
public void onError(Throwable e) {
observer.onError(e);
}
@Override
public void onComplete() {
observer.onComplete();
}
}
}
测试代码:
public void testMap() {
CustomObservable.create(new CustomObservableOnSubscribe<String>() {
@Override
public void subscribe(CustomEmitter<String> emitter) {
emitter.onNext("test create");
emitter.onComplete();
}
}).map(new CustomFunction<String, String>() {
@Override
public String apply(String s) {
return "test map " + s;
}
}).subscribe(ExampleUnitTest.<String>getObserver());
}
测试结果
==== start Thread[main,5,main] ====
Thread[main,5,main] next: test map test create
==== Thread[main,5,main] complete ====
上面实现了Rxjava基本的Observable和map操作符的实现,接下来需要实现Rxjava最重要的线程切换和复杂的操作符:
subscribeOn()
作用在上游的发射,先定义一个CustomScheduler
,提供执行任务的接口
public class CustomScheduler {
private final Executor executor;
public CustomScheduler(Executor executor) {
this.executor = executor;
}
public CustomWorker createWorker() {
return new CustomWorker(executor);
}
public static class CustomWorker{
private final Executor executor;
public CustomWorker(Executor executor) {
this.executor = executor;
}
public void schedule(Runnable runnable) {
executor.execute(runnable);
}
}
}
我们可以定义多种多样的CustomScheduler,指定执行在什么线程或者线程池。我们还可以造一个执行在主线程的Scheduler,就可以达到AndroidSchedulers.mainThread()一样的效果。
继续在CustomObservable中提供subscribeOn()的方法:
// CustomObservable
public CustomObservable<T> subscribeOn(CustomScheduler scheduler) {
return new CustomObservableSubscribeOn(this, scheduler);
}
跟上篇文章一样,生成了CustomObservableSubscribeOn来封装上游和下游。CustomObservableSubscribeOn的实现也很简单,只是将上游的执行扔进CustomScheduler线程池里面执行,下游Observer不需要做什么动作。
class CustomObservableSubscribeOn<T> extends CustomObservable<T> {
private CustomObservableSource<T> source;
private CustomScheduler scheduler;
public CustomObservableSubscribeOn(CustomObservableSource<T> source, CustomScheduler scheduler) {
this.source = source;
this.scheduler = scheduler;
}
@Override
protected void subscribeActual(final CustomObserver observer) {
final CustomSubscribeOnObserver subscribeOnObserver = new CustomSubscribeOnObserver(observer);
CustomScheduler.CustomWorker worker = scheduler.createWorker();
worker.schedule(new Runnable() {
@Override
public void run() {
// 将任务执行扔进CustomScheduler
source.subscribe(subscribeOnObserver);
}
});
}
private static final class CustomSubscribeOnObserver<T> implements CustomObserver<T> {
final CustomObserver<? super T> actual;
CustomSubscribeOnObserver(CustomObserver<? super T> actual) {
this.actual = actual;
}
@Override
public void onStart() {
actual.onStart();
}
@Override
public void onNext(T t) {
actual.onNext(t);
}
@Override
public void onError(Throwable error) {
actual.onError(error);
}
@Override
public void onComplete() {
actual.onComplete();
}
}
}
其实本质跟subscribeOn是一样的,区别在于ObserveOn()作用在下游的observer中。
提供ObserverOn()方法
// CustomObservable
public CustomObservable<T> observeOn(CustomScheduler scheduler) {
return new CustomObservableObserveOn(this, scheduler);
}
继续新建CustomObservableObserveOn类,只需要将回调事件onNext等扔进CustomScheduler的线程池就完成任务了。
class CustomObservableObserveOn<T> extends CustomObservable<T> {
private CustomObservableSource<T> source;
private CustomScheduler scheduler;
public CustomObservableObserveOn(CustomObservableSource source, CustomScheduler scheduler) {
this.source = source;
this.scheduler = scheduler;
}
@Override
protected void subscribeActual(CustomObserver observer) {
CustomScheduler.CustomWorker worker = scheduler.createWorker();
CustomObserverObserveOn observerObserveOn = new CustomObserverObserveOn<T>(observer, worker);
source.subscribe(observerObserveOn);
}
private static class CustomObserverObserveOn<T> implements CustomObserver<T> {
private CustomObserver<T> observer;
private CustomScheduler.CustomWorker worker;
public CustomObserverObserveOn(CustomObserver<T> observer, CustomScheduler.CustomWorker worker) {
this.observer = observer;
this.worker = worker;
}
@Override
public void onStart() {
this.worker.schedule(new Runnable() {
@Override
public void run() {
observer.onStart();
}
});
}
@Override
public void onNext(final T t) {
this.worker.schedule(new Runnable() {
@Override
public void run() {
observer.onNext(t);
}
});
}
@Override
public void onError(final Throwable e) {
this.worker.schedule(new Runnable() {
@Override
public void run() {
observer.onError(e);
}
});
}
@Override
public void onComplete() {
this.worker.schedule(new Runnable() {
@Override
public void run() {
observer.onComplete();
}
});
}
}
}
Rxjava用fromIterable 操作符可以逐次发射list的中的数据。
怎么简单实现一个封装多个值的Observable。其实也不难,就是执行subscribeOn()后,多次调用onNext()发射数据。
// CustomObservable
public static <T> CustomObservable<T> from(Iterable<T> values) {
return new CustomObservableIterable<>(values);
}
继续造CustomObservableIterable
class CustomObservableIterable<T> extends CustomObservable {
private Iterable<T> valueIter;
public CustomObservableIterable(Iterable<T> valueIter) {
this.valueIter = valueIter;
}
@Override
protected void subscribeActual(CustomObserver observer) {
CustomIterableObserver<T> iterableObserver = new CustomIterableObserver<>(valueIter, observer);
CustomInterableSource source = new CustomInterableSource();
source.subscribe(iterableObserver);
}
private class CustomInterableSource implements CustomObservableSource {
@Override
public void subscribe(CustomObserver observer) {
observer.onStart();
observer.onNext(null);
observer.onComplete();
}
}
private static class CustomIterableObserver<T> implements CustomObserver<T> {
private Iterable<T> valueIter;
private CustomObserver<T> observer;
CustomIterableObserver(Iterable<T> valueIter, CustomObserver<T> observer) {
this.valueIter = valueIter;
this.observer = observer;
}
@Override
public void onStart() {
this.observer.onStart();
}
@Override
public void onNext(T t) {
for (T value : valueIter) {
this.observer.onNext(value);
}
}
@Override
public void onError(Throwable e) {
this.observer.onError(e);
}
@Override
public void onComplete() {
this.observer.onComplete();
}
}
}
网上把zip说得好复杂,每次我都没看明白,其实zip用起来很简单,就是将多个上游的发射请求执行结果混合在一起,统一发射给同一个下游observer。但是要注意的是,多个上游的是一一对应混合的。
任务A的执行的结果是[1, 2, 3]
任务B的执行的结果是[1, 2]
混合规则是加法,那么最后的结果是什么?
结果是:[2, 4]
因为B没有结果跟A的3对应,所以抛弃了A的3。
zip的实现比较复杂,同样先提供一个对外的静态方法
// CustomObservable
public static <T, U, R> CustomObservable<R> zip(final CustomObservableSource<T> o1,
final CustomObservableSource<U> o2,
CustomBiFunction<T, U, R> mapper) {
List<CustomObservableSource<?>> list = Arrays.asList(o1, o2);
CustomFunction<Object[], R> arrayFunc = new CustomFunctions.Array2Func(mapper);
return new CustomObservableZip(list, arrayFunc);
}
public interface CustomBiFunction<T, U, R> {
R apply(T t, U u);
}
我们将CustomBitFunction转换成CustomFunction
public class CustomObservableZip<T, U, R> extends CustomObservable<T> {
List<CustomObservableSource<T>> sources;
CustomFunction<Object[], R> mapper;
public CustomObservableZip(List<CustomObservableSource<T>> sources, CustomFunction<Object[], R> mapper) {
this.sources = sources;
this.mapper = mapper;
}
@Override
protected void subscribeActual(CustomObserver observer) {
ZipCoordinator zipCoordinator = new ZipCoordinator(observer, sources, mapper);
zipCoordinator.subscribe();
}
static final class ZipCoordinator<T, R> {
CustomObserver<R> actual;
List<CustomObservableSource<T>> sources;
List<ZipObserver<T, R>> observers;
CustomFunction<Object[], R> mapper;
int size;
boolean isFinish;
ZipCoordinator(CustomObserver<R> observer,
List<CustomObservableSource<T>> sources,
CustomFunction<Object[], R> mapper) {
this.actual = observer;
this.sources = sources;
this.mapper = mapper;
this.size = sources.size();
this.observers = new ArrayList<>(size);
this.isFinish = false;
}
public void subscribe() {
actual.onStart();
for (int i = 0; i<size; i++) {
ZipObserver observer = new ZipObserver<T, R>(this);
observers.add(observer);
}
for (int i = 0; i<size; i++) {
sources.get(i).subscribe(observers.get(i));
}
}
void drain() {
if (isFinish) {
return;
}
boolean canMerge = true;
boolean isDone = true;
for (ZipObserver<T, R> observer: observers) {
if (!observer.isDone) {
isDone = false;
}
if (observer.queue.isEmpty()) {
canMerge = false;
}
}
if (canMerge) {
List<T> mergeList = new ArrayList<>(size);
for (ZipObserver<T, R> observer: observers) {
T t = observer.queue.poll();
mergeList.add(t);
}
actual.onNext(mapper.apply(mergeList.toArray()));
}
if (isDone) {
actual.onComplete();
}
}
}
static class ZipObserver<T, R> implements CustomObserver<T> {
boolean isDone;
ZipCoordinator<T, R> parent;
Queue<T> queue;
Throwable error;
public ZipObserver(ZipCoordinator parent) {
this.parent = parent;
this.queue = new LinkedList<>();
this.isDone = false;
}
@Override
public void onStart() {
}
@Override
public void onNext(T o) {
queue.add(o);
parent.drain();
}
@Override
public void onError(Throwable e) {
isDone = true;
error = e;
parent.drain();
}
@Override
public void onComplete() {
isDone = true;
parent.drain();
}
}
}
事实上Rxjava的zip实现比上面复杂多一些。
简单说下我的实现方式,就是为每一个CustomObservableSource提供一个ZipObserver,内部存储着自己的计算结果,每次执行完任务调用onNext的时候,就去看下是不是所有的zipObserver的队列都是有计算结果的,如果是,就将结果混合之后发射出去。
public <R> CustomObservable<R> flatMap(CustomFunction<T, CustomObservableSource<R>> function) {
return new CustomObservableFlatMap(this, function);
}
其实flatmap跟map的区别在于,前者是将值转换成一个Observable,而后者将值转换成另外种类型的值。
public class CustomObservableFlatMap<T, R> extends CustomObservable {
private CustomObservableSource<T> source;
private CustomFunction<T, CustomObservableSource<R>> mapper;
public CustomObservableFlatMap(CustomObservableSource<T> source, CustomFunction<T, CustomObservableSource<R>> mapper) {
this.source = source;
this.mapper = mapper;
}
@Override
protected void subscribeActual(CustomObserver observer) {
CustomFlatMapObserver<T, R> flatMapObserver = new CustomFlatMapObserver(observer, mapper);
source.subscribe(flatMapObserver);
}
private static class CustomFlatMapObserver<T, R> implements CustomObserver<T> {
private CustomObserver<R> observer;
private CustomFunction<T, CustomObservableSource<R>> mapper;
public CustomFlatMapObserver(CustomObserver<R> observer, CustomFunction<T, CustomObservableSource<R>> mapper) {
this.observer = observer;
this.mapper = mapper;
}
@Override
public void onStart() {
observer.onStart();
}
@Override
public void onNext(T t) {
CustomObservableSource<R> source = mapper.apply(t);
InnerObserver<R> innerObserver = new InnerObserver<>(observer);
source.subscribe(innerObserver);
}
@Override
public void onError(Throwable e) {
observer.onError(e);
}
@Override
public void onComplete() {
observer.onComplete();
}
private static class InnerObserver<R> implements CustomObserver<R> {
private CustomObserver<R> observer;
InnerObserver(CustomObserver<R> observer) {
this.observer = observer;
}
@Override
public void onStart() {
}
@Override
public void onNext(R result) {
observer.onNext(result);
}
@Override
public void onError(Throwable e) {
observer.onError(e);
}
@Override
public void onComplete() {
}
}
}
}