- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 声纹识别系统(MFCC特征+DTW/SVM分类)
佩爷0107
支持向量机分类算法梅尔频率倒谱系数动态时间规整
摘要本毕业设计实现了一个完整的声纹识别系统,采用梅尔频率倒谱系数(MFCC)作为声学特征提取方法,结合动态时间规整(DTW)和支持向量机(SVM)两种分类算法进行说话人识别。系统包含语音预处理、特征提取、模型训练和识别测试等完整流程,并通过实验对比两种分类算法的性能。第一章绪论1.1研究背景与意义声纹识别(SpeakerRecognition)是生物特征识别技术的一种,通过分析语音信号中包含的说话
- 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》
竹子_23
OpenCV入门opencv人工智能计算机视觉
一、图像梯度处理:理解像素变化的本质1.1图像梯度基础图像梯度是计算机视觉中的核心概念,它描述了图像中像素强度的变化情况:梯度方向:像素值变化最剧烈的方向(垂直于边缘)梯度幅度:像素值变化的强度(值越大表示边缘越明显)物理意义:就像地形图中的等高线,梯度大的地方相当于陡坡,梯度小的地方相当于平地1.2垂直边缘提取垂直边缘是图像中物体左右边界形成的线条:特征:水平方向上像素值发生突变应用场景:文档扫
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- 破解电梯场景难题:陌讯识别算法 mAP 达 98.7%
2501_92474790
算法计算机视觉目标检测智慧城市目标跟踪
开篇痛点:电梯间电动车识别的行业困局传统视觉算法在电梯间电动车检测场景中始终面临三重挑战:复杂光线环境下(如强光直射、夜间低照度)目标特征提取不稳定,电动车与婴儿车、行李箱等相似物体的误判率高达35%;电梯轿厢狭小空间导致目标畸变严重,小目标检测漏检率超过20%;普通模型在边缘设备部署时难以兼顾精度与速度,FPS普遍低于15帧[实测数据显示]。这些问题直接导致物业安防系统告警泛滥,真正的安全隐患却
- 器件仿真学习记录(一)
john
学习
训练工具总览什么是TCADTCAD和半导体产业工艺计算机辅助设计(TCAD)就是是使用电脑仿真来改进和优化半导体工艺技术和器件。TCAD仿真工具可以解出存在于半导体器件中的硅晶圆或者layersystem中的基础的物理偏微分方程,例如离散几何的扩散和输运方程。这些密集的物理拟合使得TCAD仿真有能够预测的准确性。因此,使用TCAD计算机仿真来代替在改进和对新的半导体器件或工艺进行特征提取时需要对晶
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- Python 实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
Pythonpython分类开发语言人工智能大数据深度学习机器学习
目录Python实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例...1项目背景介绍...2项目目标与意义...2目标...2意义...3项目挑战及解决方案...3噪声数据处理...3特征提取与降维...3模型过拟合问题...4训练时间与计算资源...4数据不平衡问题...4项目特点与创新...4去噪自编码器的堆叠应用...4多层次特征学习...4噪声抑制机制...4模型自动优化...
- AI人工智能加持,人脸识别精准度飙升
AI大模型应用工坊
人工智能ai
AI人工智能加持,人脸识别精准度飙升:从模糊到清晰的技术革命关键词人脸识别、深度学习、神经网络、精准度优化、计算机视觉、特征提取、面部识别算法摘要想象一下,在一个拥挤的火车站,系统能在瞬间从数千人中准确识别出需要关注的个体;或者你的手机仅通过一瞥就能认出你,甚至在你戴着口罩时也能做到。这不是科幻电影的场景,而是当下AI驱动的人脸识别技术的真实能力。本文将深入探讨人工智能如何彻底改变人脸识别领域,从
- opencv-day2-图像预处理1
谢眠
OpenCVopencv计算机视觉
图像预处理在计算机视觉和图像处理领域,图像预处理能够提高后续处理(如特征提取、目标检测等)的准确性和效率。常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂直翻转或同时水平和垂直翻转。这个函数接受两个参数:要翻转的图像和一个指定翻
- 基于孪生网络 (Siamese Network) 的人脸识别系统
DeniuHe
Pytorchpytorch
上一个帖子记录了基于普通CNN的人脸识别系统。但是,测试准确率实在太低了只有30%。这次使用孪生网络(SiameseNet)进行实现。代码实现使用了VGG19预训练模型作为特征提取器,通过对比学习来判断两张人脸图像是否属于同一人。整个代码分为数据准备、模型构建、训练和测试四个主要部分。importmatplotlib.pyplotaspltimporttorchfromtorchimportnnf
- 工业缺陷检测的计算机视觉方法总结
思绪漂移
计算机视觉人工智能缺陷检测
工业缺陷检测的计算机视觉方法总结传统方法特征提取方式:颜色:基于HSV/RGB空间分析,如颜色直方图、颜色矩等纹理:采用LBP、Haar、Gabor滤波器等算子提取纹理模式形状:基于Hu矩、Zernike矩等数学描述符刻画几何特性尺寸:通过连通域分析计算物体像素面积、周长等参数典型处理流程:手动设计特征提取算法建立规则分类器(如SVM、决策树)基于阈值分割目标区域深度学习方法核心特点:端到端学习:
- 基于深度学习的图像分类:使用Inception-v3实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘计算机视觉python
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。Inception-v3是一种高效的深度学习架构,通过引入多尺度特征提取和模块化设计,显著提高了模型的性能和效率。本文将详细介绍如何使用Inception-v3实现高效的图像分类,从理论基础到代码实现,带你一步步掌握基于Inc
- 探秘VCSI:一款创新的视觉内容识别工具
探秘VCSI:一款创新的视觉内容识别工具是一个基于深度学习的开源项目,其主要目标是帮助开发者和数据科学家进行高效、精确的视觉内容识别。在这个数字时代,我们每天都被大量的图像和视频所包围,VCSI提供了强大的工具,使得机器能够理解这些媒体内容,从而打开了一扇全新的应用之门。技术解析VCSI基于现代神经网络架构,特别是卷积神经网络(CNNs),用于图像特征提取。它利用预训练模型,如VGG16和ResN
- 阿里云内容审核之图片审核 spring boot 项目
大佐不会说日语~
阿里云云计算安全springboot
内容审核-阿里云视觉智能开放平台阿里云的图片审核服务是一种高效的内容安全解决方案,用于自动检测和过滤图片中的不适当内容。以下是关于阿里云图片审核服务:审核方式:阿里云图片审核服务采用两种主要方式来检测图片内容:MD5比对:通过比较上传图片的MD5值与素材库中的MD5值来获取审核结果。卷积神经网络(CNN)技术:使用CNN技术进行特征提取、各部分特征汇总,并通过分类器预测识别来进行审核。内容安全服务
- OpenCV图像预处理
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,以下是一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、
- 第3.3章 一文带你入门PCL点云库及在机器人SLAM中的代码实战
行知SLAM
机器人工程师带你入门SLAM人工智能c++算法机器人开发语言
目录一、PCL库:开启3D感知大门的钥匙二、PCL库基础入门2.1什么是PCL库2.2PCL源码头文件分类概览总结2.3安装PCL库2.4基础数据结构与概念三、PCL库在SLAM中的核心应用3.1点云获取与预处理3.2点云特征提取与描述3.3点云配准3.4点云分割与目标识别四、进阶技巧与优化策略4.1提高算法效率的方法4.2解决实际问题的经验4.3与其他技术的融合五、案例分析:PCL库实战应用六、
- C++ PCL点云处理实战专栏
迅卓科技
C++PCL点云处理实战专栏c++开发语言
本次技术分享围绕C++与PCL库在工业点云处理中的工程化应用展开,结合电力、建筑、隧道等垂直领域的实际技术需求,分阶段解析点云处理的核心算法、开发实践与系统落地路径。内容涵盖:算法原理剖析:深入解析PCL库核心机制(如点云滤波、特征提取、曲面重建等),结合数学原理与代码实现逻辑,建立工业级点云处理的算法认知体系。动态库开发实践:探讨工业场景下点云处理工具链的工程化封装(如点云分割、三维建模模块),
- 【1】计算机视觉方法(更新)
annaPresident
计算机视觉计算机视觉人工智能
1计算机是视觉的定义和任务计算机视觉(ComputerVision,CV)是人工智能领域的分支,旨在通过算法让计算机从图像或视频中提取信息、理解内容并做出决策。其核心任务是模拟人类视觉系统,实现场景理解、目标检测、图像分类等功能。2传统CV解决问题的步骤和方法步骤对图片、视频进行预处理,增强对比度,灰度化,变形等特征提取,边缘、角点、纹理等分割,通过阈值进行分割,分别处理形态学处理,通过膨胀、腐蚀
- MATLAB水果分级系统水果识别
清风明月来几时
图像算法处理matlab开发语言
MATLAB草莓识别系统是一个基于MATLAB的图像处理系统,用于识别和分类草莓图像。该系统可以帮助农业领域的研究人员和农民快速准确地识别草莓品种和成熟度,从而帮助决策种植、采摘和销售的工作。系统的主要功能包括:1.图像预处理:对草莓图像进行去噪、增强和标准化等预处理工作,以提高后续的图像分析和识别效果。2.特征提取:从预处理后的图像中提取代表草莓特征的信息,例如颜色、形状、纹理等。3.分类器训练
- Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例(含模型描述及示例代
nantangyuxi
Python含模型描述及示例代码算法神经网络python人工智能大数据深度学习机器学习
目录Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例...2项目背景介绍...2项目目标与意义...3高效的模型优化...3深度特征提取...3序列数据的时序建模...3
- YOLO11优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
芯作者
D2:YOLO人工智能YOLO深度学习人工智能计算机视觉
针对微弱小目标检测的世界性难题,AAAI2025最新研究提出革命性的风车形卷积(PConv),显著提升特征提取能力与感受野,让小目标无所遁形!引言:小目标检测的挑战与突破在计算机视觉领域,小目标检测一直是极具挑战性的任务。传统卷积神经网络在处理微小物体时往往表现不佳,主要原因有二:有限的特征表达能力和不足的感受野范围。当目标尺寸小于32×32像素时,检测精度会急剧下降。近期在AAAI2025上发表
- 秩序中的混沌与混沌中的秩序:旋转数组的搜索艺术与变位词组的模式密码
司铭鸿
算法前端数据结构矩阵开发语言
在算法的世界里,秩序与混沌的边界往往比想象中更模糊。当有序数组被旋转成"数字龙卷风",当字母组合在字符串中跳起"变位之舞",传统算法将遭遇前所未有的挑战。今日,我们将深入两个经典问题:搜索旋转数组(SearchinRotatedArray)与变位词组(GroupAnagrams)。它们一个在扭曲的有序结构中寻找目标索引,一个在字母的混沌排列中识别隐藏模式。二者在"数据重构"与"特征提取"的哲学层面
- 21. 反向传播、优化器、模型的训练
啥都想学的大学生
小土堆--Pytorch学习pytorch
反向传播、优化器、模型的训练1.什么是反向传播在我们从输入层对数据进行一系列的操作,包括特征提取、函数激活、维度变换等,从输入层到输出层的各种变换可以称为前向传播。前向传播的用处是为了对输入数据转换为我们需要的回归值或者标签类别值,但是这种输出结果往往是有偏差的,这种偏差是通过误差函数进行计算的。当我们构建了一个完整的前向传播结构后,就需要考虑如何使用误差来优化我们的网络结构。常见的优化算法包括梯
- YOLO目标检测模型优化技术全景解析
YOLO目标检测模型优化技术全景解析作为实时目标检测领域的标杆算法,YOLO系列模型通过持续的技术革新不断提升性能边界。本文将从模型架构设计、数据优化、注意力机制融合、后处理策略及训练方法等维度,系统剖析YOLO优化领域的关键技术与最新进展。一、模型架构优化:突破性能瓶颈的核心路径多尺度检测层增强针对小目标检测难题,主流方案通过增加浅层检测通道优化特征提取。例如在YOLOv5中引入160×160特
- 深度学习在环境感知中的应用:案例与代码实现
让机器学会“看”世界:深度学习如何赋能环境感知?关键词深度学习|环境感知|计算机视觉|传感器融合|语义分割|目标检测|自动驾驶摘要环境感知是机器与外界互动的“眼睛和耳朵”——从自动驾驶汽车识别行人,到智能机器人避开障碍物,再到城市监控系统检测异常,所有智能系统都需要先“理解”环境,才能做出决策。传统环境感知方法依赖手工特征提取,难以应对复杂场景;而深度学习通过数据驱动的方式,让机器从大量数据中自动
- 自编码器表征学习:重构误差与隐空间拓扑结构的深度解析
码字的字节
机器学习自编码器重构误差隐空间
自编码器基础与工作原理自编码器(Autoencoder)作为深度学习领域的重要无监督学习模型,其核心思想是通过模拟人类认知过程中的"压缩-解压"机制实现数据的表征学习。这种由GeoffreyHinton团队在2006年复兴的神经网络结构,本质上是一个试图通过编码-解码过程来复制其输入的系统,却在实现这一看似简单目标的过程中,意外地获得了强大的特征提取能力。基本架构与工作流程典型自编码器由对称的两部
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方