- R拟合 | 一个分布能看到三个峰,怎么拟合出这三个正态分布的参数? | 高斯混合模型 与 EM算法
biomooc
R数学与统计r语言
1.效果已知数据符合上图分布,怎么求下图的三个分布的参数mu,sigma,及每个分布的权重lambda?2.代码:高斯混合模型(GaussianMixtureModel,简称GMM)library(mixtools)set.seed(123)#确保结果可重复#假设x是你的观测数据xsummary(mix)summaryofnormalmixEMobject:comp1comp2comp3lambd
- 2018-10-25德意志这个民族与众不同的性格
蔺广地
有人说德国是个奇妙的国家,她要么考问世界,要么拷打世界。德国是一个令世界难以回避的严酷难题,没有一个强国敢说自己完全没有受到德国的影响,包括美国和中国。这个诞生过马丁路德,丢勒,康德、高斯,歌德、席勒、贝多芬,马克思、恩格斯、还有那个被污蔑为“混世魔王”的作家尼采等多位影响巨大的思想家的奇妙国度,也会出现诸如希特勒、戈林、威廉二世这样的战争狂人。路德维希说过:“胜利,削弱了人们的思考能力。”德国是
- OpenCV(11)边缘检测、轮廓绘制、简单平移距离测量 C++
sam-zy
1.边缘检测原文链接:http://blog.sina.com.cn/s/blog_154bd48ae0102weuk.html边缘检测的一般步骤:1.滤波边缘检测的算法主要是基于图像的一阶和二阶导数。但是导数通常对噪声很敏感,所以首先要用滤波器降低噪声。常见的滤波方法主要是高斯滤波。2.增强增强边缘的基础是确定图像各点领域强度的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸现出来,在
- 【人工智能-14】OpenCV梯度处理、边缘检测、绘制轮廓、凸包检测、轮廓特征查找
m0_64233047
人工智能opencv计算机视觉
上一期【人工智能-13】OpenCV插值方法,边缘填充,图像矫正,图像掩膜,图像融合与噪点消除文章目录一、梯度处理1.图像梯度2.垂直边缘提取3.Sobel算子4.Laplacian算子二、边缘检测1.高斯模糊(降噪)2.计算梯度强度和方向3.非极大值抑制(NMS)4.双阈值检测5.边缘连接(滞后阈值)三、绘制轮廓1.什么是轮廓2.寻找轮廓3.轮廓绘制四、凸包检测1.穷举法2.QuickHull五
- 深度学习中,定量分析和定性分析是什么?要体现什么?
seasonsyy
深度学习小知识深度学习人工智能定量分析定性分析
深度学习中,定量分析和定性分析是什么?要体现什么?在深度学习和一般的数据分析中,定量分析(QuantitativeAnalysis)和定性分析(QualitativeAnalysis)是两种主要的研究方法,它们分别关注数据的数量特征和质的特征。定量分析(QuantitativeAnalysis)定性分析(QualitativeAnalysis)关注方面定量分析涉及可量化的数据,即那些可以通过数字来
- 高斯牛顿法与拟牛顿法详解:非线性优化两大核心算法
北辰alk
AI算法
文章目录一、引言:非线性优化问题概述二、高斯牛顿法详解2.1算法原理与推导2.2算法流程2.3代码实现2.4应用实例:曲线拟合2.5算法分析三、拟牛顿法详解3.1算法原理3.2常见变体3.2.1DFP方法3.2.2BFGS方法3.3算法流程3.4代码实现(BFGS)3.5应用实例:Rosenbrock函数优化3.6算法分析四、两种算法对比五、改进与变体5.1高斯牛顿法的改进5.1.1Levenbe
- CSS:filter(滤镜)属性
赛博末影猫
CSScsscss3前端filter属性
用途可以用于img标签,div标签等图像,背景,边框的调整常用属性1.灰度grayscale(),默认是0,100%就是黑白2.blux给图像设置高斯模糊的程度,radius值设定高斯模糊的程序,表示像素点合并到一起的程度不能使用百分比作为参数3.brightness调整图片的亮度,参数是百分比0表示全黑,默认是100%4.contract对比度表示明暗的差距,值越小明暗的差距越大;值越大,亮的部
- 零基础学习性能测试第三章:jmeter构建性能业务场景
目录**一、性能场景构建核心四要素****二、四步构建电商性能场景(含截图级配置)****场景需求**:模拟100用户并发操作,其中:**步骤1:创建基础结构****步骤2:设置用户比例(吞吐量控制器)****步骤3:添加操作间隔(高斯随机定时器)****步骤4:参数化关键数据(CSV驱动)****三、增强场景真实性的关键技巧****1.处理动态Token(关联提取)****2.模拟热点数据(80
- Java垃圾回收算法详解:从基础到高级全面解析
文章目录一、垃圾回收概述1.1为什么需要垃圾回收1.2垃圾回收的基本原理二、对象存活判断算法2.1引用计数法(ReferenceCounting)2.2可达性分析算法(ReachabilityAnalysis)三、垃圾回收算法分类3.1标记-清除算法(Mark-Sweep)3.2复制算法(Copying)3.3标记-整理算法(Mark-Compact)3.4分代收集算法(GenerationalC
- Elasticsearch 分析器(内置分析器,自定义分析器,IK分析器)
Elasticsearch分析器(内置分析器,自定义分析器,IK分析器)内置分析器使用分析器自定义分析器中文分析器(IK分析器)安装使用添加词典内置分析器官网:https://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-analyzers.htmlES内置了一些分析器。默认情况下,一个索引的字段类型为text是,该字段
- elasticsearch-ik分词器
菁菁兰花月
elasticsearch搜索引擎大数据
这里用的分词器版本是elasticsearch-analysis-ik-7.16.1.zip,和elasticsearch是相同的版本,这样不容易出错。每个节点的elasticsearch中都要安装elasticsearch-analysis-ik。安装过程1.linux安装zip解压器yum-yinstallunzip2.在原来的elasticsearch安装目录中的plugins目录下创建一个
- 【亲测免费】 Elasticsearch-analysis-ik中文分词插件
徐忱澜
Elasticsearch-analysis-ik中文分词插件【下载地址】Elasticsearch-analysis-ik中文分词插件elasticsearch-analysis-ik是一款专为Elasticsearch设计的中文分词插件,版本7.17.6。它能够高效处理中文文本,提供精准的分词功能,极大提升搜索体验。安装简单,只需下载、解压并放置到Elasticsearch的plugins目录
- 推荐 Elasticsearch 分析插件 - elasticsearch-analysis-ik
芮伦硕
推荐Elasticsearch分析插件-elasticsearch-analysis-ik如果你正在寻找一个强大的、中文分词效果出色的Elasticsearch分析插件,那么elasticsearch-analysis-ik绝对值得你的关注。什么是elasticsearch-analysis-ik?elasticsearch-analysis-ik是一个针对Elasticsearch的中文分析插件
- Elasticsearch安装中文分词器elasticsearch-analysis-ik 大数据
JieLun_C
大数据elasticsearch中文分词
Elasticsearch安装中文分词器elasticsearch-analysis-ik大数据近年来,随着大数据技术的不断发展,搜索引擎的应用需求也日益增加。而对于中文搜索引擎而言,一个好用的中文分词器是至关重要的。在Elasticsearch中,我们可以使用elasticsearch-analysis-ik插件来实现中文分词功能。本文将为大家详细介绍在安装和配置elasticsearch-an
- 3D Gaussian splatting 03: 用户数据训练和结果查看
目录3DGaussiansplatting01:环境搭建3DGaussiansplatting02:快速评估3DGaussiansplatting03:用户数据训练和结果查看3DGaussiansplatting04:代码阅读-提取相机位姿和稀疏点云3DGaussiansplatting05:代码阅读-训练整体流程3DGaussiansplatting06:代码阅读-训练参数3DGaussians
- 基于BERT的情感分析
机智的小神仙儿
深度学习自然语言处理bert人工智能深度学习自然语言处理
基于BERT的情感分析1.项目背景情感分析(SentimentAnalysis)是自然语言处理的重要应用之一,用于判断文本的情感倾向,如正面、负面或中性。随着深度学习的发展,预训练语言模型如BERT在各种自然语言处理任务中取得了显著的效果。本项目利用预训练语言模型BERT,构建一个能够对文本进行情感分类的模型。2.项目结构sentiment-analysis/├──data/│├──train.c
- YOLO11优化:卷积魔改创新 | AAAI 2025 | 一种新颖的风车形卷积(PConv)符合微弱小目标的像素高斯空间分布,增强特征提取,显著增加接受野
芯作者
D2:YOLO人工智能YOLO深度学习人工智能计算机视觉
针对微弱小目标检测的世界性难题,AAAI2025最新研究提出革命性的风车形卷积(PConv),显著提升特征提取能力与感受野,让小目标无所遁形!引言:小目标检测的挑战与突破在计算机视觉领域,小目标检测一直是极具挑战性的任务。传统卷积神经网络在处理微小物体时往往表现不佳,主要原因有二:有限的特征表达能力和不足的感受野范围。当目标尺寸小于32×32像素时,检测精度会急剧下降。近期在AAAI2025上发表
- 深度学习-算子
芒果快进我嘴里
opencv计算机视觉人工智能
概念:标识数字图像中亮度变化明显的点处理步骤1.滤波处理算子通常被称为滤波器。2.增强确定各点sobel算子概念:主要用于获得数字图像的一阶梯度,本质是梯度运算。Scharr算子Scharr算子是一种用于边缘检测的梯度算子,它是Sobel算子的一个变种。Scharr算子提供了一种更精确的方法来计算图像的梯度,从而进行边缘检测。它属于高斯加权的梯度算子,使用高斯平滑滤波器来减少噪声,然后计算梯度##
- Spring端口占用解决:无具体应用占用解决方案
我是zxb
java
报错日志14:56:30.442 [main] ERROR o.s.b.d.LoggingFailureAnalysisReporter - [report,40] - ***************************APPLICATION FAILED TO START***************************Description:Web server failed to s
- 用 K-means 算法实现水果分堆
wh_xia_jun
AI+医疗算法kmeans机器学习
先看运行效果:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeans#生成模拟数据(两个高斯分布的混合点集)np.random.seed(42)X1=np.random.randn(100,2)+np.array([2,2])#第一簇数据,中心在(2,2)X2=np.random.randn(100,2)
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- 2023年第10期(NeuroImage):DomainATM:多中心医学图像数据标准化工具箱
影浮科技ImageFlow
基本信息1.标题:DomainATM:Domainadaptationtoolboxformedicaldataanalysis.2.期刊:NeuroImage3.IF/JCR/分区:7.4/Q1/中科院一区4.DOI:10.1016/j.neuroimage.2023.119863目录1、导读2、背景动机3、研究目的4、工具箱介绍5、测试试验6、局限不足1导读域适应(DA)是基于机器学习的现代医
- 数字图像处理与Python语言实现-Box模糊CUDA实现
视觉与物联智能
数字图像处理与Python实现python深度学习计算机视觉图像处理CUDA
Box模糊CUDA实现文章目录Box模糊CUDA实现1、Box模糊的基本原理2、算法优化:滑动窗口技术3、参数对模糊效果的影响4、Box模糊的优缺点5、与高斯模糊的对比6、实际应用场景7、算法实现7.1PyCUDA实现7.2CuPy实现7.3C++与CUDA实现8、总结在图像处理领域,**Box模糊(方框模糊或均值模糊)**是一种基础且高效的模糊算法,其核心思想是通过对像素邻域内的颜色值取平均值来
- 3D Gaussian Splatting (3DGS) 从入门到精通:安装、训练与常见问题全解析
3DGaussianSplatting(3DGS)从入门:安装、训练与常见问题全解析3DGaussianSplatting(3DGS)作为一种新兴的实时神经渲染技术,以其惊人的渲染速度和高质量的视觉效果迅速获得了社区的关注。然而,从环境配置到数据准备,再到模型训练和结果导出,整个流程中充满了各种可能令人困惑的“坑”。本文旨在为您提供一份全面的3DGS安装与使用指南,汇总了从环境搭建到最终结果产出的
- 【I3D 2024】Deblur-GS: 3D Gaussian Splatting from Camera Motion Blurred Images
__星辰大海__
论文阅读计算机视觉算法人工智能
文章目录1.李群与李代数2.相机运动模糊建模3.相机运动轨迹近似3.1.线性插值3.2.三次样条插值3.3.K阶贝塞尔曲线插值1.李群与李代数参考博客:视觉SLAM十四讲-李群与李代数。2.相机运动模糊建模运动模糊产生的原因是:相机在曝光期间捕捉到了移动的物体或自身发生了移动,导致场景中某些像素在成像过程中不是来自单一点,而是多个位置的光线的混合。假设在时间[t0,t0+T][t_0,t_0+T]
- ABP VNext + GitHub Actions:CI/CD 全流程自动化
Kookoos
AbpvNext.netgithubci/cd自动化ABPvNext
ABPVNext+GitHubActions:CI/CD全流程自动化目录ABPVNext+GitHubActions:CI/CD全流程自动化TL;DR全局流程概览1️⃣准备工作与项目结构1.1️工具链与Secrets1.2项目目录示例2️⃣Build&Test(并行编译与单测)子流程图3️⃣️StaticAnalysis(SonarCloud&CodeQL)子流程图4️⃣Package&Publi
- 某国产数据库“热情过头”的发布会,该收收了!
IT邦德
数据库国产数据库数据库
作者:IT邦德中国DBA联盟(ACDU)成员,15年DBA工作经验Oracle、PostgreSQLACECSDN博客专家及B站知名UP主,全网粉丝15万+擅长主流Oracle、MySQL、PG、高斯及Greenplum备份恢复,安装迁移,性能优化、故障应急处理文章目录01兼容性?02多模融合?03性能玄学?04智能运维?05终极暴击总结哥们儿,还记得十年前DBA圈那场著名论战不?OLTP和OLA
- 2020-12-09
幸福大黑鸭
IT1.LeetCode:汇总区间Java编写2020-12-09(228.汇总区间)2.《Java从入门到精通》明日科技:P351~355阅读记xmind笔记,并自己实现实例。知识点之前确实都学过,但还是再系统复习一下吧。3.《Semantic-awareWorkflowConstructionandAnalysisforDistributedDataAnalyticsSystems》:粗读关键
- Matlab实现的二维框架非线性动力学求解器:几何非线性应用
悦闻闻
本文还有配套的精品资源,点击获取简介:二维框架非线性动力学求解器Matlab工具用于分析复杂结构在动态载荷作用下的行为,特别是在几何非线性效应显著的情况下。求解器采用Newmark方法进行数值积分,并通过多个Matlab脚本文件,如Newmark_Nonlinear.m和Analysis.m等,实现从加载条件到结果可视化的一系列计算流程。用户可以通过各种分析功能和示例深入了解结构在动态载荷下的响应
- NQA_路由自动切换实验(H3C)
李李网工日记
NQA可靠性路由切换
引言NQA全称是NetworkQualityAnalysis(网络质量分析),它是一种用于监测和评估网络性能的技术,通过发送探测报文(如ICMPEcho、TCP连接等)来检测网络的连通性、延迟、丢包率等指标,帮助实现网络优化和故障排查。在现代数据中心网络中,路由的高可用性和可靠性至关重要。网络质量分析(NQA)技术通过实时监测网络性能(如延时、丢包率),结合路由跟踪(Track)功能,可实现路由的
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p