spark读取kafka后写入redis

package com.prince.demo.test

import com.typesafe.config.ConfigFactory
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{Level, Logger}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.KafkaUtils
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.sql.SparkSession
import redis.clients.jedis.Jedis
/**
  * Created by prince on 2017/9/13.
  */
object SparkStreamingWriteRedis {

  Logger.getLogger("org").setLevel(Level.WARN)

  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder.appName("SparkStreamingWriteRedis").master("local[*]").getOrCreate()

    val sparkContext = spark.sparkContext
    val ssc = new StreamingContext(sparkContext, Seconds(1))

    implicit val conf = ConfigFactory.load

    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> conf.getString("kafka.brokers"),
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> conf.getString("kafka.group"),
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (false: java.lang.Boolean))

    val topic = conf.getString("kafka.topics")
    val topics = Array(topic)
    val stream = KafkaUtils
      .createDirectStream(ssc, PreferConsistent, Subscribe[String, String](topics, kafkaParams))

    val input = stream.flatMap(line => {
      Some(line.value.toString)
    })

    input.foreachRDD(rdd => {
      rdd.foreachPartition(part => {
        val jedis = new Jedis("192.168.1.97", 6379, 3000)
        jedis.auth("123456")
        part.foreach(x => {
          jedis.lpush("test_key", x)
          jedis.close()
        })
      })
    })

    ssc.start()
    ssc.awaitTermination()
  }
}

你可能感兴趣的:(spark)