- 机器学习入门:线性回归详解与实战
线性回归(LinearRegression)是机器学习中最基础也最常用的算法之一,无论是初学者入门还是实际业务场景,都能看到它的身影。本文将从概念、原理到代码实现,带你全方位了解线性回归。一、什么是线性回归?简单来说,线性回归是一种用于预测自变量与因变量之间线性关系的算法。它假设因变量(需要预测的结果)与一个或多个自变量(影响因素)之间存在线性关联,通过构建数学模型来描述这种关系,从而实现对未知数
- 机器学习入门(五):线性回归—从模型函数到目标函数
米饭超人
从数据反推公式假设我们获得了这样一张表格,上面列举了美国纽约若干程序员职位的年薪:enterimagedescriptionhere大家可以看到,表格中列举了职位、经验、技能、国家和城市几项特征。除了经验一项,其他都是一样的。不同的经验(工作年限),薪水不同。而且看起来,工作年头越多,工资也就越高。那么我们把Experience与Salary抽取出来,用x和y来分别指代它们。enterimaged
- 使用Python进行机器学习入门指南
软考和人工智能学堂
Python开发经验python机器学习开发语言
使用Python进行机器学习入门指南机器学习(MachineLearning)是人工智能(ArtificialIntelligence,AI)的一个重要分支,旨在通过算法和统计模型,使计算机系统能够自动从数据中学习和改进。Python作为机器学习领域的主流编程语言,提供了丰富的库和工具来实现各种机器学习任务。本文将介绍如何使用Python进行机器学习,包括基本概念、常用库以及一个实战项目示例。目录
- 量子机器学习入门:从理论到实践
量子机器学习入门:从理论基石到实践路径元数据框架标题量子机器学习入门:从理论基石到实践路径——连接量子计算与人工智能的未来桥梁关键词量子计算;机器学习;量子算法;量子神经网络;Qiskit;PennyLane;量子变分算法摘要量子机器学习(QuantumMachineLearning,QML)是量子计算与机器学习的交叉领域,通过量子计算的叠加态、纠缠和并行性解决传统机器学习的计算瓶颈(如高维数据处
- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- C#串口通信上位机笔记(modbus协议)
指针刺客
c#笔记开发语言
C#串口通信上位机笔记(modbus协议)提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录C#串口通信上位机笔记(modbus协议)前言一、新建工程二、使用步骤1.引入库2.串口初始化总结前言提示:这里可以添加本文要记录的大概内容:记录自己工作的上位机经验
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- Python 数据分析与机器学习入门 (三):Pandas 数据导入与核心操作
程序员阿超的博客
Pythonpython数据分析机器学习PandasDataFrameSeries数据清洗
引言:Pandas是什么,为何如此重要?如果说NumPy是处理原始数值数组的利器,那么Pandas则是驾驭结构化数据的瑞士军刀。在真实世界的数据分析项目中,数据很少是单纯的数字矩阵。它们通常以表格形式存在,包含行和列,每列可能有不同的数据类型(如文本、数字、日期),并且带有描述性的列名和行索引。Pandas正是为高效处理这类数据而生。Pandas构建于NumPy之上,它不仅继承了NumPy的高性能
- Python 人工智能与数据科学实战
gohacker
python人工智能开发语言
#Python人工智能与数据科学实战##机器学习入门###Scikit-learn基础```pythonfromsklearn.datasetsimportload_irisfromsklearn.model_sel
- Nginx 缓存系统 proxy_cache详解
学堂在线
云计算Linux系统nginx缓存运维服务器开源
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言功能特点proxy_cache工作原理示意图配置文件示例参数详尽说明性能优化方案总结前言Nginx的proxy_cache模块是Nginx代理功能的一部分,它允许Nginx缓存来自
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- neo4j导出导入csv文件
qq_45133760
neo4jneo4j
neo4j导出导入csv文件提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录neo4j导出导入csv文件前言一、导出csv文件二、导入csv总结前言有时候需要吧一个数据库导入导入另一个数据库。有两种方法,本文介绍命令行admin方法,还有cypher方法,
- 【机器学习基础】机器学习入门核心:Jaccard相似度 (Jaccard Index) 和 Pearson相似度 (Pearson Correlation)
白熊188
机器学习基础机器学习人工智能
机器学习入门核心:Jaccard相似度(JaccardIndex)和Pearson相似度(PearsonCorrelation)一、算法逻辑Jaccard相似度(JaccardIndex)**Pearson相似度(PearsonCorrelation)**二、算法原理与数学推导1.Jaccard相似度公式2.Pearson相似度公式三、模型评估中的角色相似度度量的评估重点在推荐系统中的评估四、应用
- sns.load_dataset(“iris“)无法导入,无需下载seaborn到本地的解决方案
九龙湖野生炼丹民工
python机器学习sklearn
最近发现很多机器学习入门教程选择从seaborn中加载鸢尾花(iris)数据集,然而直接运行因为连接问题或本地无对应数据库会带来很多问题,常规的解决方法为从github下载seaborn-data保存到本地,但是操作仍然比较繁琐,且小白可能对于git下载和本地的数据存放形式也不熟悉,这里提供一种替换方法,改为从机器学习库scikitlearn中导入iris数据集,并转换为教程中的dataframe
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- QT信号和槽
出现一片乱码
QT开发qt开发语言
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、信号和槽信号的特点:槽的特点二、连接1、QT42、QT5四、注意事项五、扩展前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重
- 量化用到的机器学习书籍推荐
输出输入
人工智能+量化EA机器学习
以下是一些适合不同层次读者的机器学习书籍推荐:零基础入门-《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。-《MachineLearningforHumans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学
- 26备战秋招day17——机器学习基础
如意鼠
26秋招机器学习人工智能
机器学习入门指南:常见算法详解与代码实现机器学习(MachineLearning,ML)是人工智能(AI)的一个重要分支,旨在通过数据驱动的方法让计算机系统自动学习和改进。对于刚接触机器学习的朋友来说,了解各种算法的基本原理及其实现方法至关重要。本篇文章将通俗易懂地介绍几种常见的机器学习算法,解释其背后的数学原理,并提供简单的代码示例,帮助你更好地理解这些算法的工作机制。目录什么是机器学习?监督学
- python机器学习入门案例——基于SVM分类器的鸢尾花分类(附完整代码)
左手の明天
python机器学习python深度学习机器学习
数据集介绍总共包含150行数据每一行数据由4个特征值及一个目标值组成。4个特征值分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度目标值为三种不同类别的鸢尾花,分别为:IrisSetosa、IrisVersicolour、IrisVirginica数据集中每朵鸢尾花叫做一个数据点,它的品种叫做它的标签数据集样式:导入需要的模块包importnumpya
- 机器学习基本概念
zhangbijun1230
机器学习
机器学习入门好文,强烈推荐转载2017年02月01日23:44:3064729导读:在本篇文章中,将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。当然,本文也面对一般读者,不会对阅读有相关的前提要求。在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢?我并不直接回答这个问题前。相反,我想请大
- 2020-06-23 暑期学习日更计划(机器学习入门之路(资源汇总)+概率论)
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
机器学习入门前言 说实话,机器学习想学好真心不易,很多时候都感觉自己学得云里雾里。以前一段时间自己为了完成毕业设计,在机器学习的理论部分并没有深究,仅仅通过TensorFlow框架力求快速实现模型。现在来看,很多时候因为基础知识不牢固,一些问题很难想通。而现在暑假正好有一大块可以自由学习的时间,希望自己能重新学习一下关于机器学习、或是深度学习理论方面的知识,并且通过一些项目,让自己更好的熟悉人工
- (一)POI 4.1.2 颜色 color
YuHan_2020
poipoiexceljava
(一)POI4.1.2颜色color提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用文章目录(一)POI4.1.2颜色color前言一、IndexedColors所有颜色二、使用步骤1.pom.xml中引入依赖2.运行IndexedColorsExamplemain方法总结前言POI文档与示例方面对国人并不友好,往往不知道怎么
- 局域网访问django网页
我爱欧阳
djangopython后端
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用-Djangoweb局域网访问–提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、修改setting.py,运行外部访问django二、启动django框架三、查看本机IP地址:四、在浏览器中输入网址:总结前言提示:这里可以添
- Python之机器学习入门
兮兮能吃能睡
环境工程之交叉发展python机器学习开发语言
机器学习与Python的结合非常紧密,Python因其简洁的语法和丰富的库成为机器学习的主流语言。以下是一个机器学习入门指南及Python代码示例:我的机器学习之路(初稿)1.常用Python机器学习库Scikit-learn:经典机器学习算法库TensorFlow/PyTorch:深度学习框架Pandas:数据处理与分析NumPy:数值计算Matplotlib/Seaborn:数据可视化安装命令
- 一文详细梳理!大模型从理论到实战落地必备干货!零基础入门到精通,收藏这一篇就够了
网络安全大白
科技网络安全程序员安全网络安全系统安全
在人工智能的浩瀚星辰中,大模型犹如璀璨的北极星,引领着技术的前沿方向。它们不仅代表了深度学习领域的最新突破,更成为了推动各行各业智能化转型的关键力量。本文笔者总结了大模型从理论研究到实战落地所需具备的所有知识干货,与大家分享~基础知识数学深入浅出动态可视化数学之美(几何、微积分、概率论、线性代数等):https://space.bilibili.com/88461692/机器学习吴恩达机器学习入门
- 2025年AI开发学习路线
By北阳
AI人工智能学习aiAIGC
目录一、基础阶段(2-3个月)1.数学与编程基础2.机器学习入门二、核心技能(3-4个月)1.深度学习与框架2.大模型开发(重点)三、进阶方向(3-6个月)1.多模态与智能体(Agent)2.行业应用与部署四、实战项目推荐五、学习资源整合持续学习建议一、基础阶段(2-3个月)1.数学与编程基础数学知识线性代数:矩阵运算、特征值与特征向量(参考《线性代数及其应用》及Coursera课程[Linear
- 【机器学习】机器学习入门基础普及介绍(面向新人小白)
偷偷的卷
机器学习人工智能python学习
hello大家好!机器学习的小文章如期而至~还是和数据结构的顺序一样,也是从头开始描述,有基础的朋友可以看目录划重点哈OK,咱们话不多说,直奔主题!本次介绍也是根据我之前学习的经验来选择相应的内容,也参考了带我的教授的一些教学内容,所以可以说是经历之谈,不是那种方方面面俱全的百科,略写的部分后续的文章还会展开讲的,不好理解的地方也带过了或者没有提及,毕竟是入门嘛(顺带一提,这位教授来自MIT,大家
- 真正适合小白的机器学习入门(python基础小白也能行)
一心向上的小奥
机器学习入门机器学习python人工智能
算法一Kmeans聚类原理:K-Means是一种非常经典的聚类算法,其基本思想是:基于给定的数据点集合,通过迭代过程寻找k个聚类中心,使得各数据点到其最近聚类中心的距离之和最小。方法概述:初始化:随机选择k个数据点作为初始的聚类中心。分配:将每个数据点分配给最近的聚类中心。更新:根据分配的结果,重新计算每个聚类的中心。重复:重复步骤2和步骤3,直到聚类中心不再改变或达到最大迭代次数代码实现impo
- 人工智能与机器学习入门:决策树应用
决策树机器学习入门
在人工智能与机器学习入门:使用Kaggle完成Titanic推断学习一文中,给出了使用Kaggle进行机器学习入门的方法,本文基于上文的需求。尝试使用决策树模型来训练数据,并进行test数据集的测试。什么是决策树决策树,简单来讲可以认为是一个大的ifelse判断树,有了决策树后,测试集中的数据便可以使用该决策树进行判断了。比如根据Titanic的训练数据构造了上次决策树后,便可以根据测试数据的性别
- 机器学习入门第三集——如何完整实现一次模型训练
梯度寻优者_超
机器学习人工智能python算法大数据回归数据分析
提示:如何完整的从数据导入到最后模型训练以及模型保存,本集进行介绍。文章目录上集回顾一、数据集是什么?二、完整训练过程1.导入数据2.数据集划分3.模型训练4.模型保存以及加载总结下集预告上集回顾提示:上集已经对机器学习基础知识分类常用算法等进行了描述,这集开始是如何完整训练模型,前两集已经介绍了机器学习的通俗解释,已经常见分类,还有机器学习深度学习强化学习的关系和区别。有想看的小伙伴可以翻我主页
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring